Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

dc.bibliographicCitation.firstPage2937
dc.bibliographicCitation.issue5
dc.bibliographicCitation.lastPage2947
dc.bibliographicCitation.volume11
dc.contributor.authorWüst, Sabine
dc.contributor.authorOffenwanger, Thomas
dc.contributor.authorSchmidt, Carsten
dc.contributor.authorBittner, Michael
dc.contributor.authorJacobi, Christoph
dc.contributor.authorStober, Gunter
dc.contributor.authorYee, Jeng-Hwa
dc.contributor.authorMlynczak, Martin G.
dc.contributor.authorRussell III, James M.
dc.date.accessioned2022-12-20T13:23:14Z
dc.date.available2022-12-20T13:23:14Z
dc.date.issued2018-5-18
dc.description.abstractFor the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector. OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09∘ N, 11.28∘ E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30∘ N, 13.02∘ E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar. In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10686
dc.identifier.urihttp://dx.doi.org/10.34657/9722
dc.language.isoeng
dc.publisherKatlenburg-Lindau : Copernicus
dc.relation.doihttps://doi.org/10.5194/amt-11-2937-2018
dc.relation.essn1867-8548
dc.relation.ispartofseriesAtmospheric measurement techniques : AMT 11 (2018), Nr. 5
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectairgloweng
dc.subjectgravity waveeng
dc.subjectharmonic analysiseng
dc.subjectionosphereeng
dc.subjectmesopauseeng
dc.subjectmesosphereeng
dc.subjectparameter estimationeng
dc.subjectspectrometereng
dc.subjectthermosphereeng
dc.subjectvelocityeng
dc.subjectwave dispersioneng
dc.subjectwave groupeng
dc.subjectwavelengtheng
dc.subjectBavariaeng
dc.subjectGermanyeng
dc.subjectOberpfaffenhofeneng
dc.subject.ddc550
dc.titleDerivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometereng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric measurement techniques : AMT
tib.accessRightsopenAccesseng
wgl.contributorIAP
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Derivation_of_gravity_wave.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description: