Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elastoplasticity
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this note we investigate the question of higher regularity up to the boundary for quasilinear elliptic systems which origin from the time-discretization of models from infinitesimal elasto-plasticity. Our main focus lies on an elasto-plastic Cosserat model. More specifically we show that the time discretization renders $H^2$-regularity of the displacement and $H^1$-regularity for the symmetric plastic strain $varepsilon_p$ up to the boundary provided the plastic strain of the previous time step is in $H^1$, as well. This result contrasts with classical Hencky and Prandtl-Reuss formulations where it is known not to hold due to the occurrence of slip lines and shear bands. Similar regularity statements are obtained for other regularizations of ideal plasticity like viscosity or isotropic hardening. In the first part we recall the time continuous Cosserat elasto-plasticity problem, provide the update functional for one time step and show various preliminary results for the update functional (Legendre-Hadamard/monotonicity). Using non standard difference quotient techniques we are able to show the higher global regularity. Higher regularity is crucial for qualitative statements of finite element convergence. As a result we may obtain estimates linear in the mesh-width $h$ in error estimates.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.