Canonical fitness model for simple scale-free graphs

No Thumbnail Available
Date
2012
Volume
Issue
Journal
Physical Review E
Series Titel
Book Title
Publisher
College Park : American Physical Society
Abstract

We consider a fitness model assumed to generate simple graphs with a power-law heavy-tailed degree sequence, P(k)∝k−1−α with 0<α<1, in which the corresponding distributions do not possess a mean. We discuss the situations in which the model is used to produce a multigraph and examine what happens if the multiple edges are merged to a single one and thus a simple graph is built. We give the relation between the (normalized) fitness parameter r and the expected degree ν of a node and show analytically that it possesses nontrivial intermediate and final asymptotic behaviors. We show that the model produces P(k)∝k−2 for large values of k independent of α. Our analytical findings are confirmed by numerical simulations.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.