Oracle complexity separation in convex optimization

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2711
dc.contributor.authorIvanova, Anastasiya
dc.contributor.authorGasnikov, Alexander
dc.contributor.authorDvurechensky, Pavel
dc.contributor.authorDvinskikh, Darina
dc.contributor.authorTyurin, Alexander
dc.contributor.authorVorontsova, Evgeniya
dc.contributor.authorPasechnyuk, Dmitry
dc.date.accessioned2022-06-30T12:54:13Z
dc.date.available2022-06-30T12:54:13Z
dc.date.issued2020
dc.description.abstractUbiquitous in machine learning regularized empirical risk minimization problems are often composed of several blocks which can be treated using different types of oracles, e.g., full gradient, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achievable separately for the full gradient case, the stochastic gradient case, etc. We propose a generic framework to combine optimal algorithms for different types of oracles in order to achieve separate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called the optimal number of times for a given accuracy. As a particular example, we demonstrate that for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate descent oracle our approach leads to the optimal number of oracle calls separately for the full gradient part and the stochastic/coordinate descent part.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9361
dc.identifier.urihttps://doi.org/10.34657/8399
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2711
dc.relation.hasversionhttps://doi.org/10.1007/s10957-022-02038-7
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherConvex optimizationeng
dc.subject.othercomposite optimizationeng
dc.subject.otherproximal methodeng
dc.subject.otheraccelerationeng
dc.subject.otherrandom coordinate descenteng
dc.subject.othervariance reductioneng
dc.titleOracle complexity separation in convex optimizationeng
dc.typeReporteng
dc.typeTexteng
dcterms.extent21 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2711.pdf
Size:
363.85 KB
Format:
Adobe Portable Document Format
Description: