Holographic vector field electron tomography of three-dimensional nanomagnets

dc.bibliographicCitation.firstPage87eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage244eng
dc.bibliographicCitation.volume2eng
dc.contributor.authorWolf, D.
dc.contributor.authorBiziere, N.
dc.contributor.authorSturm, S.
dc.contributor.authorReyes, D.
dc.contributor.authorWade, T.
dc.contributor.authorNiermann, T.
dc.contributor.authorKrehl, J.
dc.contributor.authorWarot-Fonrose, B.
dc.contributor.authorBüchner, B.
dc.contributor.authorSnoeck, E.
dc.contributor.authorGatel, C.
dc.contributor.authorLubk, A.
dc.date.accessioned2020-07-13T11:01:18Z
dc.date.available2020-07-13T11:01:18Z
dc.date.issued2019
dc.description.abstractComplex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3524
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4895
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s42005-019-0187-8
dc.relation.ispartofseriesCommunications Physics 2 (2019), Nr. 1eng
dc.relation.issn2399-3650
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectCrystallinityeng
dc.subjectElectric impedance tomographyeng
dc.subjectEnergy efficiencyeng
dc.subjectHolographyeng
dc.subjectImage resolutioneng
dc.subjectMagnetizationeng
dc.subjectNanomagneticseng
dc.subjectNanowireseng
dc.subjectTextureseng
dc.subjectElectrostatic potentialseng
dc.subjectMagnetic characteristiceng
dc.subjectMagnetic nanostructureseng
dc.subjectMagnetization configurationeng
dc.subjectMagnetization currentseng
dc.subjectStructural variationseng
dc.subjectTechnological challengeseng
dc.subjectTomographic reconstructioneng
dc.subjectImage reconstructioneng
dc.subject.ddc530eng
dc.titleHolographic vector field electron tomography of three-dimensional nanomagnetseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleCommunications Physicseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wolf et al 2019, Holographic vector field electron tomography of three-dimensional nanomagnets.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Collections