Holographic vector field electron tomography of three-dimensional nanomagnets

dc.bibliographicCitation.firstPage87eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleCommunications Physicseng
dc.bibliographicCitation.lastPage244eng
dc.bibliographicCitation.volume2eng
dc.contributor.authorWolf, D.
dc.contributor.authorBiziere, N.
dc.contributor.authorSturm, S.
dc.contributor.authorReyes, D.
dc.contributor.authorWade, T.
dc.contributor.authorNiermann, T.
dc.contributor.authorKrehl, J.
dc.contributor.authorWarot-Fonrose, B.
dc.contributor.authorBüchner, B.
dc.contributor.authorSnoeck, E.
dc.contributor.authorGatel, C.
dc.contributor.authorLubk, A.
dc.date.accessioned2020-07-13T11:01:18Z
dc.date.available2020-07-13T11:01:18Z
dc.date.issued2019
dc.description.abstractComplex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3524
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4895
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s42005-019-0187-8
dc.relation.issn2399-3650
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherCrystallinityeng
dc.subject.otherElectric impedance tomographyeng
dc.subject.otherEnergy efficiencyeng
dc.subject.otherHolographyeng
dc.subject.otherImage resolutioneng
dc.subject.otherMagnetizationeng
dc.subject.otherNanomagneticseng
dc.subject.otherNanowireseng
dc.subject.otherTextureseng
dc.subject.otherElectrostatic potentialseng
dc.subject.otherMagnetic characteristiceng
dc.subject.otherMagnetic nanostructureseng
dc.subject.otherMagnetization configurationeng
dc.subject.otherMagnetization currentseng
dc.subject.otherStructural variationseng
dc.subject.otherTechnological challengeseng
dc.subject.otherTomographic reconstructioneng
dc.subject.otherImage reconstructioneng
dc.titleHolographic vector field electron tomography of three-dimensional nanomagnetseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wolf et al 2019, Holographic vector field electron tomography of three-dimensional nanomagnets.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Collections