An optically pumped magnetometer working in the light-shift dispersed Mz mode

Loading...
Thumbnail Image
Date
2017
Volume
17
Issue
3
Journal
Sensors
Series Titel
Book Title
Publisher
Basel : MDPI
Link to publishers version
Abstract

We present an optically pumped magnetometer working in a new operational mode—the light-shift dispersed Mz (LSD-Mz) mode. It is realized combining various features; (1) high power off-resonant optical pumping; (2) Mz configuration, where pumping light and magnetic field of interest are oriented parallel to each other; (3) use of small alkali metal vapor cells of identical properties in integrated array structures, where two such cells are pumped by circularly polarized light of opposite helicity; and (4) subtraction of the Mz signals of these two cells. The LSD-Mz magnetometer’s performance depends on the inherent and very complex interplay of input parameters. In order to find the configuration of optimal magnetometer resolution, a sensitivity analysis of the input parameters by means of Latin Hypercube Sampling was carried out. The resulting datasets of the multi-dimensional parameter space exploration were assessed by a subsequent physically reasonable interpretation. Finally, the best shot-noise limited magnetic field resolution was determined within that parameter space. As the result, using two 50 mm3 integrated vapor cells a magnetic field resolution below 10 fT/√Hz at Earth’s magnetic field strength is possible

Description
Keywords
License
CC BY 4.0 Unported