Reducing sub-modules of the Bergman module A(λ)(Dn) under the action of the symmetric group
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The weighted Bergman spaces on the polydisc, A(λ)(Dn), \lambda>0, splits into orthogonal direct sum of subspaces Pp(A(λ)(Dn)) indexed by the partitions p of n, which are in one to one correspondence with the equivalence classes of the irreducible representations of the symmetric group on n symbols. In this paper, we prove that each sub-module Pp(A(λ)(Dn)) is a locally free Hilbert module of rank equal to square of the dimension χp(1) of the corresponding irreducible representation. It is shown that given two partitions p and q, if χp(1)≠χq(1), then the sub-modules Pp(A(λ)(Dn)) and Pq(A(λ)(Dn)) are not equivalent. We prove that for the trivial and the sign representation corresponding to the partitions p=(n) and p=(1,…,1), respectively, the sub-modules P(n)(A(λ)(Dn)) and P(1,…,1)(A(λ)Dn)) are inequivalent. In particular, for n=3, we show that all the sub-modules in this decomposition are inequivalent.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.