Reducing sub-modules of the Bergman module A(λ)(Dn) under the action of the symmetric group
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2017-19 | |
dc.contributor.author | Biswas, Shibananda | |
dc.contributor.author | Ghosh, Gargi | |
dc.contributor.author | Misra, Gadadhar | |
dc.contributor.author | Roy, Subrata Shyam | |
dc.date.accessioned | 2017-11-23T21:32:08Z | |
dc.date.available | 2019-06-28T08:08:54Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The weighted Bergman spaces on the polydisc, A(λ)(Dn), \lambda>0, splits into orthogonal direct sum of subspaces Pp(A(λ)(Dn)) indexed by the partitions p of n, which are in one to one correspondence with the equivalence classes of the irreducible representations of the symmetric group on n symbols. In this paper, we prove that each sub-module Pp(A(λ)(Dn)) is a locally free Hilbert module of rank equal to square of the dimension χp(1) of the corresponding irreducible representation. It is shown that given two partitions p and q, if χp(1)≠χq(1), then the sub-modules Pp(A(λ)(Dn)) and Pq(A(λ)(Dn)) are not equivalent. We prove that for the trivial and the sign representation corresponding to the partitions p=(n) and p=(1,…,1), respectively, the sub-modules P(n)(A(λ)(Dn)) and P(1,…,1)(A(λ)Dn)) are inequivalent. In particular, for n=3, we show that all the sub-modules in this decomposition are inequivalent. | |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3066 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2614 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2017-19 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Hilbert modules | eng |
dc.subject.other | locally free | eng |
dc.subject.other | symmetric functions | eng |
dc.subject.other | spanning section | eng |
dc.title | Reducing sub-modules of the Bergman module A(λ)(Dn) under the action of the symmetric group | |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2017_19.pdf
- Size:
- 509.13 KB
- Format:
- Adobe Portable Document Format
- Description: