Reducing sub-modules of the Bergman module A(λ)(Dn) under the action of the symmetric group

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-19
dc.contributor.authorBiswas, Shibananda
dc.contributor.authorGhosh, Gargi
dc.contributor.authorMisra, Gadadhar
dc.contributor.authorRoy, Subrata Shyam
dc.date.accessioned2017-11-23T21:32:08Z
dc.date.available2019-06-28T08:08:54Z
dc.date.issued2017
dc.description.abstractThe weighted Bergman spaces on the polydisc, A(λ)(Dn), \lambda>0, splits into orthogonal direct sum of subspaces Pp(A(λ)(Dn)) indexed by the partitions p of n, which are in one to one correspondence with the equivalence classes of the irreducible representations of the symmetric group on n symbols. In this paper, we prove that each sub-module Pp(A(λ)(Dn)) is a locally free Hilbert module of rank equal to square of the dimension χp(1) of the corresponding irreducible representation. It is shown that given two partitions p and q, if χp(1)≠χq(1), then the sub-modules Pp(A(λ)(Dn)) and Pq(A(λ)(Dn)) are not equivalent. We prove that for the trivial and the sign representation corresponding to the partitions p=(n) and p=(1,…,1), respectively, the sub-modules P(n)(A(λ)(Dn)) and P(1,…,1)(A(λ)Dn)) are inequivalent. In particular, for n=3, we show that all the sub-modules in this decomposition are inequivalent.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3066
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2614
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2017-19
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherHilbert moduleseng
dc.subject.otherlocally freeeng
dc.subject.othersymmetric functionseng
dc.subject.otherspanning sectioneng
dc.titleReducing sub-modules of the Bergman module A(λ)(Dn) under the action of the symmetric group
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_19.pdf
Size:
509.13 KB
Format:
Adobe Portable Document Format
Description: