Stochastic homogenization on randomly perforated domains

Loading...
Thumbnail Image
Date
2020
Volume
2742
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We study the existence of uniformly bounded extension and trace operators for W1,p-functions on randomly perforated domains, where the geometry is assumed to be stationary ergodic. Such extension and trace operators are important for compactness in stochastic homogenization. In contrast to former approaches and results, we use very weak assumptions on the geometry which we call local (δ, M)-regularity, isotropic cone mixing and bounded average connectivity. The first concept measures local Lipschitz regularity of the domain while the second measures the mesoscopic distribution of void space. The third is the most tricky part and measures the ''mesoscopic'' connectivity of the geometry. In contrast to former approaches we do not require a minimal distance between the inclusions and we allow for globally unbounded Lipschitz constants and percolating holes. We will illustrate our method by applying it to the Boolean model based on a Poisson point process and to a Delaunay pipe process. We finally introduce suitable Sobolev spaces on Rd and Ω in order to construct a stochastic two-scale convergence method and apply the resulting theory to the homogenization of a p-Laplace problem on a randomly perforated domain.

Description
Keywords
Citation
Heida, M. (2020). Stochastic homogenization on randomly perforated domains (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2742
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.