Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes

Loading...
Thumbnail Image
Date
2023
Volume
7
Issue
18
Journal
Sustainable Energy & Fuels
Series Titel
Book Title
Publisher
Cambridge : Royal Society of Chemistry
Link to publishers version
Abstract

Due to their high energy density, Li-ion batteries have become indispensable for energy storage in many technical devices. Prussian blue and its analogs are a versatile family of materials. Apart from their direct use as an alkali-ion battery electrode, they are a promising source for templating other compounds due to the presence of carbon, nitrogen, and metallic elements in their structure, ease of synthesis, and high tunability. In this study, homogeneous iron vanadate derivatization from iron vanadium Prussian blue was successfully carried out using an energy efficient infrared furnace utilizing CO2 gas. Iron-vanadate is an inherently unstable electrode material if cycled at low potentials vs. Li/Li+. Several parameters were optimized to achieve a stable electrochemical performance of this derivative, and the effect of surfactants, such as tannic acid, sodium dodecylbenzene sulfonate, and polyvinylpyrrolidone were shown with their role in the morphology and electrochemical performance. While stabilizing the performance, we demonstrate that the type and order of addition of these surfactants are fundamental for a successful coating formation, otherwise they can hinder the formation of PBA, which has not been reported previously. Step-by-step, we illustrate how to prepare self-standing electrodes for Li-ion battery cells without using an organic solvent or a fluorine-containing binder while stabilizing the electrochemical performance. A 400 mA h g−1 capacity at the specific current of 250 mA g−1 was achieved after 150 cycles while maintaining a Coulombic efficiency of 99.2% over an extended potential range of 0.01–3.50 V vs. Li/Li+.

Description
Keywords
Electrochemical electrodes, Energy efficiency, Infrared furnaces, Ions, Iron oxides, Surface active agents, Vanadium compounds
Citation
Bornamehr, B., El Gaidi, H., Arnold, S., Pameté, E., & Presser, V. (2023). Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes. 7(18). https://doi.org//10.1039/D3SE00854A
License
CC BY 3.0 Unported