Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements

dc.bibliographicCitation.issue1
dc.bibliographicCitation.volume28
dc.contributor.authorZiemak, Steven
dc.contributor.authorKirshenbaum, K.
dc.contributor.authorSaha, S.R.
dc.contributor.authorHu, R.
dc.contributor.authorReid, J.-Ph.
dc.contributor.authorGordon, R.
dc.contributor.authorTaillefer, L.
dc.contributor.authorEvtushinsky, D.
dc.contributor.authorThirupathaiah, S.
dc.contributor.authorBüchner, B.
dc.contributor.authorBorisenko, S.V.
dc.contributor.authorIgnatov, A.
dc.contributor.authorKolchmeyer, D.
dc.contributor.authorBlumberg, G.
dc.contributor.authorPaglione, J.
dc.date.accessioned2018-07-26T02:23:41Z
dc.date.available2019-06-28T07:32:37Z
dc.date.issued2014
dc.description.abstractThermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting energy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the $T\to 0$ limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of Tc = 23 K, revealing an isotropic gap of magnitude $\sim 3$ meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below Tc. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point-contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe2−xPtxAs2 doping system and how this relates to similar substituted iron pnictides.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/5047
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1555
dc.language.isoengeng
dc.publisherBristol : IOP Publishingeng
dc.relation.doihttps://doi.org/10.1088/0953-2048/15/014004
dc.relation.ispartofseriesSuperconductor Science and Technology, Volume 28, Issue 1eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectARPESeng
dc.subjectiron pnictideseng
dc.subjectpoint contact spectroscopyeng
dc.subjectRaman spectroscopyeng
dc.subjectthermal conductivityeng
dc.subject.ddc620eng
dc.titleIsotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurementseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleSuperconductor Science and Technologyeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ziemak_2015_Supercond._Sci._Technol._28_014004.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
Description: