The Meteoric Ni Layer in the Upper Atmosphere

dc.bibliographicCitation.firstPagee2020JA028083eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleJournal of geophysical research (JGR) : Space Physicseng
dc.bibliographicCitation.volume125eng
dc.contributor.authorDaly, Shane M.
dc.contributor.authorFeng, Wuhu
dc.contributor.authorMangan, Thomas P.
dc.contributor.authorGerding, Michael
dc.contributor.authorPlane, John M.C.
dc.date.accessioned2021-08-20T05:03:29Z
dc.date.available2021-08-20T05:03:29Z
dc.date.issued2020
dc.description.abstractThe first global atmospheric model of Ni (WACCM-Ni) has been developed to understand recent observations of the mesospheric Ni layer by ground-based resonance lidars. The three components of the model are: the Whole Atmospheric Community Climate Model (WACCM6); a meteoric input function derived by coupling an astronomical model of dust sources in the solar system with a chemical meteoric ablation model; and a comprehensive set of neutral, ion-molecule, and photochemical reactions pertinent to the chemistry of Ni in the upper atmosphere. In order to achieve closure on the chemistry, the reaction kinetics of three important reactions were first studied using a fast flow tube with pulsed laser ablation of a Ni target, yielding k(NiO + O) = (4.6 ± 1.4) × 10−11, k(NiO + CO) = (3.0 ± 0.5) × 10−11, and k(NiO2 + O) = (2.5 ± 1.2) × 10−11 cm3 molecule−1 s−1 at 294 K. The photodissociation rate of NiOH was computed to be J(NiOH) = 0.02 s−1. WACCM-Ni simulates satisfactorily the observed neutral Ni layer peak height and width, and Ni+ measurements from rocket-borne mass spectrometry. The Ni layer is predicted to have a similar seasonal and latitudinal variation as the Fe layer, and its unusually broad bottom-side compared with Fe is caused by the relatively fast NiO + CO reaction. The quantum yield for photon emission from the Ni + O3 reaction, observed in the nightglow, is estimated to be between 6% and 40%. ©2020. The Authors.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6543
dc.identifier.urihttps://doi.org/10.34657/5590
dc.language.isoengeng
dc.publisherHoboken, NJ : Wileyeng
dc.relation.doihttps://doi.org/10.1029/2020JA028083
dc.relation.essn2169-9402
dc.relation.issn2169-9380
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc550eng
dc.subject.ddc520eng
dc.subject.otherairgloweng
dc.subject.othercosmic dusteng
dc.subject.othermetal layerseng
dc.subject.othermeteorseng
dc.subject.othernickeleng
dc.titleThe Meteoric Ni Layer in the Upper Atmosphereeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIAPeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The Meteoric Ni Layer in the Upper Atmosphere.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description: