Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting

dc.bibliographicCitation.firstPage1910432eng
dc.bibliographicCitation.issue10eng
dc.bibliographicCitation.journalTitleAdvanced Functional Materialseng
dc.bibliographicCitation.lastPagem297eng
dc.bibliographicCitation.volume30eng
dc.contributor.authorHermans Y.
dc.contributor.authorKlein A.
dc.contributor.authorSarker H.P.
dc.contributor.authorHuda M.N.
dc.contributor.authorJunge H.
dc.contributor.authorToupance T.
dc.contributor.authorJaegermann W.
dc.date.accessioned2021-09-07T16:55:23Z
dc.date.available2021-09-07T16:55:23Z
dc.date.issued2020
dc.description.abstractCuFeO2 is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO2-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO2/Pt, CuFeO2/Ag, and CuFeO2/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO2 hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO2, the Fermi level tunability in CuFeO2 is evaluated by creating CuFeO2/ITO and CuFeO2/H2O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe3+/Fe2+ electron polaron formation level may intrinsically prohibit CuFeO2 from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6747
dc.identifier.urihttps://doi.org/10.34657/5794
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCH Verlageng
dc.relation.doihttps://doi.org/10.1002/adfm.201910432
dc.relation.essn1616-3028
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.otherChemical analysiseng
dc.subject.otherCopper compoundseng
dc.subject.otherDensity functional theoryeng
dc.subject.otherFermi leveleng
dc.subject.otherPhotocatalysiseng
dc.subject.otherPhotoelectron spectroscopyeng
dc.subject.otherPhotoelectronseng
dc.subject.otherPhotonseng
dc.subject.otherPolaronseng
dc.subject.otherCarrier separationeng
dc.subject.otherCuFeO2eng
dc.subject.otherElectron polaronseng
dc.subject.otherFermi level pinningeng
dc.subject.otherPerformance testseng
dc.subject.otherPhoto-depositioneng
dc.subject.otherPolaron formationeng
dc.subject.otherWater splittingeng
dc.subject.otherIron compoundseng
dc.titlePinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splittingeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorLIKATeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.201910432.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description: