A permutation characterization of Sturm attractors of Hamiltonian type
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider Neumann boundary value problems of the form u_t = u_xx + f on the interval leq x leq pi$ for dissipative nonlinearities f = f (u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the general case f = f (x, u, u_x ). We present a permutation characterization for the global attractors in the restrictive class of nonlinearities f = f (u) this class the stationary solutions of the parabolic equation satisfy the second order ODE v^primeprime + f (v) = 0 and we obtain the permutation characterization from a characterization of the set of 2pi-periodic orbits of this planar Hamiltonian system. Our results are based on a diligent discussion of this mere pendulum equation.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.