On the probability density function of baskets

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1796
dc.contributor.authorBayer, Christian
dc.contributor.authorFriz, Klaus K.
dc.contributor.authorLaurence, Peter
dc.date.accessioned2016-03-24T17:37:19Z
dc.date.available2019-06-28T08:15:47Z
dc.date.issued2013
dc.description.abstractThe state price density of a basket, even under uncorrelated Black–Scholes dynamics, does not allow for a closed from density. (This may be rephrased as statement on the sum of lognormals and is especially annoying for such are used most frequently in Financial and Actuarial Mathematics.) In this note we discuss short time and small volatility expansions, respectively. The method works for general multi-factor models with correlations and leads to the analysis of a system of ordinary (Hamiltonian) differential equations. Surprisingly perhaps, even in two asset Black–Scholes situation (with its flat geometry), the expansion can degenerate at a critical (basket) strike level; a phenomena which seems to have gone unnoticed in the literature to date. Explicit computations relate this to a phase transition from a unique to more than one “most-likely” paths (along which the diffusion, if suitably conditioned, concentrates in the afore-mentioned regimes). This also provides a (quantifiable) understanding of how precisely a presently out-of-money basket option may still end up in-the-money.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2886
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3041
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherSums of lognormalseng
dc.subject.otherfocalityeng
dc.subject.otherpricing of butterfly spreads on basketseng
dc.titleOn the probability density function of basketseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
755826728.pdf
Size:
263.48 KB
Format:
Adobe Portable Document Format
Description: