Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: Strong coupling limit

dc.bibliographicCitation.firstPage63010eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage4376eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorSenf, F.
dc.contributor.authorAltrock, P.M.
dc.contributor.authorBehn, U.
dc.date.accessioned2020-08-12T05:34:52Z
dc.date.available2020-08-12T05:34:52Z
dc.date.issued2009
dc.description.abstractA finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter ac(N) is determined. We identify a crossover from linear to square root scaling with increasing distance from ac. The crossover point approaches ac in the limit N →∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4125
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5496
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/11/6/063010
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc530eng
dc.subject.otherCentre of masseng
dc.subject.otherControl parameterseng
dc.subject.otherCritical valueeng
dc.subject.otherCrossover pointseng
dc.subject.otherFinite arrayeng
dc.subject.otherFixed pointseng
dc.subject.otherFokker Planckeng
dc.subject.otherGeneral classeng
dc.subject.otherInfinite arrayseng
dc.subject.otherLangevineng
dc.subject.otherNonequilibrium phase transitionseng
dc.subject.otherNumerical simulationeng
dc.subject.otherParameter spaceseng
dc.subject.otherRelative coordinateseng
dc.subject.otherSquare-root scalingeng
dc.subject.otherStochastic flowseng
dc.subject.otherStrong couplingeng
dc.subject.otherTime-scaleseng
dc.subject.otherControl system analysiseng
dc.subject.otherProbability distributionseng
dc.subject.otherStochastic modelseng
dc.subject.otherPhase transitionseng
dc.titleNonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: Strong coupling limiteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIAPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Senf et al 2009, Nonequilibrium phase transitions in finite arrays.pdf
Size:
820.85 KB
Format:
Adobe Portable Document Format
Description:
Collections