Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2683 | |
dc.contributor.author | Frerichs, Derk | |
dc.contributor.author | Merdon, Christian | |
dc.date.accessioned | 2022-06-30T12:42:34Z | |
dc.date.available | 2022-06-30T12:42:34Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Non divergence-free discretisations for the incompressible Stokes problem may suffer from a lack of pressure-robustness characterised by large discretisations errors due to irrotational forces in the momentum balance. This paper argues that also divergence-free virtual element methods (VEM) on polygonal meshes are not really pressure-robust as long as the right-hand side is not discretised in a careful manner. To be able to evaluate the right-hand side for the testfunctions, some explicit interpolation of the virtual testfunctions is needed that can be evaluated pointwise everywhere. The standard discretisation via an L2 -bestapproximation does not preserve the divergence and so destroys the orthogonality between divergence-free testfunctions and possibly eminent gradient forces in the right-hand side. To repair this orthogonality and restore pressure-robustness another divergence-preserving reconstruction is suggested based on Raviart--Thomas approximations on local subtriangulations of the polygons. All findings are proven theoretically and are demonstrated numerically in two dimensions. The construction is also interesting for hybrid high-order methods on polygonal or polyhedral meshes. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9333 | |
dc.identifier.uri | https://doi.org/10.34657/8371 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2683 | |
dc.relation.hasversion | https://doi.org/10.1093/imanum/draa073 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Incompressible Navier--Stokes equations | eng |
dc.subject.other | mixed virtual element method | eng |
dc.subject.other | pressure-robustness | eng |
dc.subject.other | divergence-free velocity reconstruction | eng |
dc.subject.other | polygonal meshes | eng |
dc.title | Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 18 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2683.pdf
- Size:
- 327.41 KB
- Format:
- Adobe Portable Document Format
- Description: