TinyGenius: Intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creation

dc.bibliographicCitation.articleNumber5
dc.bibliographicCitation.bookTitleProceedings of the 22nd ACM/IEEE Joint Conference on Digital Librarieseng
dc.bibliographicCitation.journalTitleACM Digital Libraryeng
dc.contributor.authorOelen, Allard
dc.contributor.authorStocker, Markus
dc.contributor.authorAuer, Sören
dc.contributor.editorAizawa, Akiko
dc.date.accessioned2024-03-26T09:13:42Z
dc.date.available2024-03-26T09:13:42Z
dc.date.issued2022
dc.description.abstractAs the number of published scholarly articles grows steadily each year, new methods are needed to organize scholarly knowledge so that it can be more efficiently discovered and used. Natural Language Processing (NLP) techniques are able to autonomously process scholarly articles at scale and to create machine readable representations of the article content. However, autonomous NLP methods are by far not sufficiently accurate to create a high-quality knowledge graph. Yet quality is crucial for the graph to be useful in practice. We present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. The scholarly context in which the crowd workers operate has multiple challenges. The explainability of the employed NLP methods is crucial to provide context in order to support the decision process of crowd workers. We employed TinyGenius to populate a paper-centric knowledge graph, using five distinct NLP methods. In the end, the resulting knowledge graph serves as a digital library for scholarly articles.eng
dc.description.versionacceptedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14512
dc.identifier.urihttps://doi.org/10.34657/13543
dc.language.isoeng
dc.publisherNew York,NY,United States : Association for Computing Machinery
dc.relation.doihttps://doi.org/10.1145/3529372.3533285
dc.relation.isbn978-1-4503-9345-4
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed on other websites via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht auf anderen Webseiten im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc004
dc.subject.ddc020
dc.subject.gndKonferenzschriftger
dc.subject.otherCrowdsourcing Microtaskseng
dc.subject.otherIntelligent User Interfaceseng
dc.subject.otherKnowledge Graph Validationeng
dc.subject.otherScholarly Knowledge Graphseng
dc.titleTinyGenius: Intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creationeng
dc.typeBookParteng
dc.typeTexteng
dcterms.event22nd ACM/IEEE Joint Conference on Digital Libraries, JCDL 2022, 20 June 2022-24 June 2022, Virtual, Online
tib.accessRightsopenAccess
wgl.contributorTIB
wgl.subjectInformatikger
wgl.typeBuchkapitel / Sammelwerksbeitragger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TinyGenius.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format
Description:
Collections