Cell-Instructive Multiphasic Gel-in-Gel Materials

dc.bibliographicCitation.firstPage1908857eng
dc.bibliographicCitation.issue26eng
dc.bibliographicCitation.journalTitleAdvanced Functional Materialseng
dc.bibliographicCitation.volume30eng
dc.contributor.authorKühn, Sebastian
dc.contributor.authorSievers, Jana
dc.contributor.authorStoppa, Aukha
dc.contributor.authorTräber, Nicole
dc.contributor.authorZimmermann, Ralf
dc.contributor.authorWelzel, Petra B.
dc.contributor.authorWerner, Carsten
dc.date.accessioned2021-09-02T11:29:45Z
dc.date.available2021-09-02T11:29:45Z
dc.date.issued2020
dc.description.abstractDeveloping tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell-instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue- and organ-specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel-in-gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6668
dc.identifier.urihttps://doi.org/10.34657/5715
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.201908857
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.relation.issn1616-301X
dc.relation.issn1057-9257
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.othercell-instructive propertieseng
dc.subject.othergel-in-gel materialseng
dc.subject.othermultiphasic hydrogelseng
dc.titleCell-Instructive Multiphasic Gel-in-Gel Materialseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.201908857.pdf
Size:
5.12 MB
Format:
Adobe Portable Document Format
Description: