Longtime behavior for a generalized Cahn--Hilliard system with fractional operators
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn--Hilliard system, with possibly singular potentials, which we recently investigated in the paper "Well-posedness and regularity for a generalized fractional CahnHilliard system". More precisely, we give a complete characterization of the Omega-limit of the phase parameter. The characterization depends on the first eigenvalue of one of the involved operators: if this eigenvalue is positive, then the chemical potential vanishes at infinity, and every element of the Omega-limit is a stationary solution to the phase equation; if it is zero instead, then every element of the Omega-limit solves a problem containing a real function which is related to the chemical potential. Such a function is nonunique and time dependent, in general, as we show by means of an example; however, we give sufficient conditions for it to be uniquely determined and constant.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.