The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth

Loading...
Thumbnail Image
Date
2019
Volume
12
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

Let X be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the flat spaces. Denote by h>0 the mean curvature of horospheres in X, and set ρ=h/2. Fixing a basepoint o∈X, for ξ∈∂X, denote by Bξ the Busemann function at ξ such that Bξ(o)=0. then for λ∈C the function e(iλ−ρ)Bξ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue −(λ2+ρ2). For a function f on X, we define the Fourier transform of f by f~(λ,ξ):=∫Xf(x)e(−iλ−ρ)Bξ(x)dvol(x) for all λ∈C,ξ∈∂X for which the integral converges. We prove a Fourier inversion formula f(x)=C0∫∞0∫∂Xf~(λ,ξ)e(iλ−ρ)Bξ(x)dλo(ξ)|c(λ)|−2dλ for f∈C∞c(X), where c is a certain function on R−{0}, λo is the visibility measure on ∂X with respect to the basepoint o∈X and C0>0 is a constant. We also prove a Plancherel theorem, and a version of the Kunze-Stein phenomenon.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.