The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume12
dc.contributor.authorBiswas, Kingshook
dc.contributor.authorKnieper, Gerhard
dc.contributor.authorPeyerimhoff, Norbert
dc.date.accessioned2024-10-16T16:43:26Z
dc.date.available2024-10-16T16:43:26Z
dc.date.issued2019
dc.description.abstractLet X be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the flat spaces. Denote by h>0 the mean curvature of horospheres in X, and set ρ=h/2. Fixing a basepoint o∈X, for ξ∈∂X, denote by Bξ the Busemann function at ξ such that Bξ(o)=0. then for λ∈C the function e(iλ−ρ)Bξ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue −(λ2+ρ2). For a function f on X, we define the Fourier transform of f by f~(λ,ξ):=∫Xf(x)e(−iλ−ρ)Bξ(x)dvol(x) for all λ∈C,ξ∈∂X for which the integral converges. We prove a Fourier inversion formula f(x)=C0∫∞0∫∂Xf~(λ,ξ)e(iλ−ρ)Bξ(x)dλo(ξ)|c(λ)|−2dλ for f∈C∞c(X), where c is a certain function on R−{0}, λo is the visibility measure on ∂X with respect to the basepoint o∈X and C0>0 is a constant. We also prove a Plancherel theorem, and a version of the Kunze-Stein phenomenon.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16903
dc.identifier.urihttps://doi.org/10.34657/15925
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2019-12
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.titleThe Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2019_12.pdf
Size:
516.08 KB
Format:
Adobe Portable Document Format
Description: