The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 12 | |
dc.contributor.author | Biswas, Kingshook | |
dc.contributor.author | Knieper, Gerhard | |
dc.contributor.author | Peyerimhoff, Norbert | |
dc.date.accessioned | 2024-10-16T16:43:26Z | |
dc.date.available | 2024-10-16T16:43:26Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Let X be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the flat spaces. Denote by h>0 the mean curvature of horospheres in X, and set ρ=h/2. Fixing a basepoint o∈X, for ξ∈∂X, denote by Bξ the Busemann function at ξ such that Bξ(o)=0. then for λ∈C the function e(iλ−ρ)Bξ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue −(λ2+ρ2). For a function f on X, we define the Fourier transform of f by f~(λ,ξ):=∫Xf(x)e(−iλ−ρ)Bξ(x)dvol(x) for all λ∈C,ξ∈∂X for which the integral converges. We prove a Fourier inversion formula f(x)=C0∫∞0∫∂Xf~(λ,ξ)e(iλ−ρ)Bξ(x)dλo(ξ)|c(λ)|−2dλ for f∈C∞c(X), where c is a certain function on R−{0}, λo is the visibility measure on ∂X with respect to the basepoint o∈X and C0>0 is a constant. We also prove a Plancherel theorem, and a version of the Kunze-Stein phenomenon. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16903 | |
dc.identifier.uri | https://doi.org/10.34657/15925 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2019-12 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.title | The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2019_12.pdf
- Size:
- 516.08 KB
- Format:
- Adobe Portable Document Format
- Description: