Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb-Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation

dc.bibliographicCitation.firstPage1802566
dc.bibliographicCitation.issue36
dc.bibliographicCitation.volume8
dc.contributor.authorDörr, Tobias Sebastian
dc.contributor.authorDeilmann, Leonie
dc.contributor.authorHaselmann, Greta
dc.contributor.authorCherevan, Alexey
dc.contributor.authorZhang, Peng
dc.contributor.authorBlaha, Peter
dc.contributor.authorde Oliveira, Peter William
dc.contributor.authorKraus, Tobias
dc.contributor.authorEder, Dominik
dc.date.accessioned2023-01-27T09:31:10Z
dc.date.available2023-01-27T09:31:10Z
dc.date.issued2018
dc.description.abstractPure and Nb-doped TiO2 photocatalysts with highly ordered alternating gyroid architecture and well-controllable mesopore size of 15 nm via co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer are synthesized. A combined effort by electron microscopy, X-ray scattering, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, and density functional theory simulations reveals that the addition of small amounts of Nb results in the substitution of Ti4+ with isolated Nb5+ species that introduces inter-bandgap states, while at high concentrations, Nb prefers to cluster forming shallow trap states within the conduction band minimum of TiO2. The gyroidal photocatalysts are remarkably active toward hydrogen evolution under UV and visible light due to the open 3D network, where large mesopores ensure efficient pore diffusion and high photon harvesting. The gyroids yield unprecedented high evolution rates beyond 1000 µmol h−1 (per 10 mg catalyst), outperforming even the benchmark P25-TiO2 more than fivefold. Under UV light, the Nb-doping reduces the activity due to the introduction of charge recombination centers, while the activity in the visible triple upon incorporation is owed to a more efficient absorption due to inter-bandgap states. This unique pore architecture may further offer hitherto undiscovered optical benefits to photocatalysis, related to chiral and metamaterial-like behavior, which will stimulate further studies focusing on novel light–matter interactions.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11106
dc.identifier.urihttp://dx.doi.org/10.34657/10132
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/aenm.201802566
dc.relation.essn1614-6840
dc.relation.ispartofseriesAdvanced Energy Materials 8 (2018), Nr. 36eng
dc.relation.issn1614-6832
dc.rights.licenseCC BY-NC 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectblock copolymerseng
dc.subjectphotocatalysiseng
dc.subjectself-assemblyeng
dc.subjecttitanium dioxideeng
dc.subject.ddc600
dc.subject.ddc050
dc.titleOrdered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb-Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiationeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAdvanced Energy Materials
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ordered-Mesoporous-TiO2-Gyroids.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description:
Collections