Thermoelectric Characterization Platform for Electrochemically Deposited Materials

dc.bibliographicCitation.firstPage1901288eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.journalTitleAdvanced electronic materialseng
dc.bibliographicCitation.lastPage102eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorBarati, Vida
dc.contributor.authorGarcia Fernandez, Javier
dc.contributor.authorGeishendorf, Kevin
dc.contributor.authorSchnatmann, Lauritz Ule
dc.contributor.authorLammel, Michaela
dc.contributor.authorKunzmann, Alexander
dc.contributor.authorPérez, Nicolás
dc.contributor.authorLi, Guodong
dc.contributor.authorSchierning, Gabi
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorReith, Heiko
dc.date.accessioned2021-08-23T07:15:12Z
dc.date.available2021-08-23T07:15:12Z
dc.date.issued2020
dc.description.abstractSuccessful optimization of the thermoelectric (TE) performance of materials, described by the figure of merit zT, is a key enabler for its application in energy harvesting or Peltier cooling devices. While the zT value of bulk materials is accessible by a variety of commercial measurement setups, precise determination of the zT value for thin and thick films remains a great challenge. This is particularly relevant for films synthesized by electrochemical deposition, where the TE material is deposited onto an electrically conductive seed layer causing an in-plane short circuit. Therefore, a platform for full in-plane zT characterization of electrochemically deposited TE materials is developed, eliminating the impact of the electrically conducting seed layer. The characterization is done using a suspended TE material within a transport device which was prepared by photolithography in combination with chemical etching steps. An analytical model to determine the thermal conductivity is developed and the results verified using finite element simulations. Taken together, the full in-plane zT characterization provides an inevitable milestone for material optimization under realistic conditions in TE devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6557
dc.identifier.urihttps://doi.org/10.34657/5604
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCH Verlag GmbH & Co. KGeng
dc.relation.doihttps://doi.org/10.1002/aelm.201901288
dc.relation.essn2199-160X
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc621.3eng
dc.subject.otherCoNieng
dc.subject.otherelectrochemical depositioneng
dc.subject.otherthermal conductivityeng
dc.subject.otherthermoelectricseng
dc.titleThermoelectric Characterization Platform for Electrochemically Deposited Materialseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thermoelectric Characterization Platform for....pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description: