Overdetermined problems for the fractional Laplacian in exterior and annular sets
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2054 | |
dc.contributor.author | Soave, Nicola | |
dc.contributor.author | Valdinoci, Enrico | |
dc.date.accessioned | 2016-03-24T17:36:51Z | |
dc.date.available | 2019-06-28T08:11:10Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We consider a fractional elliptic equation in an unbounded set with both Dirichlet and fractional normal derivative datum prescribed. We prove that the domain and the solution are necessarily radially symmetric. The extension of the result in bounded non-convex regions is also studied, as well as the radial symmetry of the solution when the set is a priori supposed to be rotationally symmetric. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/2974 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2790 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Rigidity and classification results | eng |
dc.subject.other | fractional Laplacian | eng |
dc.subject.other | unbounded domains | eng |
dc.subject.other | overdetermined problems | eng |
dc.title | Overdetermined problems for the fractional Laplacian in exterior and annular sets | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 814414397.pdf
- Size:
- 382.15 KB
- Format:
- Adobe Portable Document Format
- Description: