Machine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling

Loading...
Thumbnail Image
Date
2023
Authors
Volume
26
Issue
Journal
Oberwolfach reports : OWR
Series Titel
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

Rapid progress in machine learning is enabling scientific advances across a range of disciplines. However, the utility of machine learning for science remains constrained by its current inability to translate insights from data about the dynamics of a system to new scientific knowledge about why those dynamics emerge, as traditionally represented by physical modelling. Mathematics is the interface that bridges data-driven and physical models of the world and can provide a foundation for delivering such knowledge. This workshop convened researchers working across domains with a shared interest in mathematics, machine learning, and their application in the sciences, to explore how tools of mathematics can help build machine learning tools for scientific discovery.

Description
Keywords
Citation
Machine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach). (2023). https://doi.org//10.14760/OWR-2023-26
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.