Machine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling

dc.bibliographicCitation.journalTitleOberwolfach reports : OWR
dc.bibliographicCitation.volume26
dc.contributor.otherLawrence, Neil
dc.contributor.otherMontgomery, Jessica
dc.contributor.otherSchölkopf, Bernhard
dc.date.accessioned2024-10-18T08:30:58Z
dc.date.available2024-10-18T08:30:58Z
dc.date.issued2023
dc.description.abstractRapid progress in machine learning is enabling scientific advances across a range of disciplines. However, the utility of machine learning for science remains constrained by its current inability to translate insights from data about the dynamics of a system to new scientific knowledge about why those dynamics emerge, as traditionally represented by physical modelling. Mathematics is the interface that bridges data-driven and physical models of the world and can provide a foundation for delivering such knowledge. This workshop convened researchers working across domains with a shared interest in mathematics, machine learning, and their application in the sciences, to explore how tools of mathematics can help build machine learning tools for scientific discovery.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/17098
dc.identifier.urihttps://doi.org/10.34657/16120
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWR-2023-26
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.gndKonferenzschrift
dc.titleMachine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling
dc.typeArticle
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2023_26.pdf
Size:
263.54 KB
Format:
Adobe Portable Document Format
Description: