Machine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling
dc.bibliographicCitation.journalTitle | Oberwolfach reports : OWR | |
dc.bibliographicCitation.volume | 26 | |
dc.contributor.other | Lawrence, Neil | |
dc.contributor.other | Montgomery, Jessica | |
dc.contributor.other | Schölkopf, Bernhard | |
dc.date.accessioned | 2024-10-18T08:30:58Z | |
dc.date.available | 2024-10-18T08:30:58Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Rapid progress in machine learning is enabling scientific advances across a range of disciplines. However, the utility of machine learning for science remains constrained by its current inability to translate insights from data about the dynamics of a system to new scientific knowledge about why those dynamics emerge, as traditionally represented by physical modelling. Mathematics is the interface that bridges data-driven and physical models of the world and can provide a foundation for delivering such knowledge. This workshop convened researchers working across domains with a shared interest in mathematics, machine learning, and their application in the sciences, to explore how tools of mathematics can help build machine learning tools for scientific discovery. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/17098 | |
dc.identifier.uri | https://doi.org/10.34657/16120 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWR-2023-26 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | |
dc.title | Machine Learning for Science: Mathematics at the Interface of Data-driven and Mechanistic Modelling | |
dc.type | Article | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2023_26.pdf
- Size:
- 263.54 KB
- Format:
- Adobe Portable Document Format
- Description: