Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

dc.bibliographicCitation.volume2653
dc.contributor.authorKantner, Markus
dc.contributor.authorHöhne, Theresa
dc.contributor.authorKoprucki, Thomas
dc.contributor.authorBurger, Sven
dc.contributor.authorWünsche, Hans-Jürgen
dc.contributor.authorSchmidt, Frank
dc.contributor.authorMielke, Alexander
dc.contributor.authorBandelow, Uwe
dc.date.accessioned2022-06-23T14:49:32Z
dc.date.available2022-06-23T14:49:32Z
dc.date.issued2019
dc.description.abstractSelf-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9237
dc.identifier.urihttps://doi.org/10.34657/8275
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2653
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik ; 2653
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subjectNanophotonic deviceseng
dc.subjectdevice simulationeng
dc.subjectmulti-physics modelseng
dc.subjectVCSELseng
dc.subjectsingle-photon sourceseng
dc.subjectwaveguideseng
dc.subjectquantum dotseng
dc.subjectvan Roosbroeck systemeng
dc.subjectdrift-diffusion equationseng
dc.subjectMaxwell equationseng
dc.subjectLindblad master equationeng
dc.subjectGENERICeng
dc.subjectoptical resonance modeseng
dc.subjectdegenerate semiconductorseng
dc.subjectfinite volume methodeng
dc.subjectfinite element methodeng
dc.subject.ddc510
dc.titleMulti-dimensional modeling and simulation of semiconductor nanophotonic deviceseng
dc.typereporteng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
dcterms.extent35 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2653.pdf
Size:
9.49 MB
Format:
Adobe Portable Document Format
Description:
Collections