A random walk model for the Schrödinger equation

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2109
dc.contributor.authorWagner, Wolfgang
dc.date.available2019-06-28T08:22:00Z
dc.date.issued2015
dc.description.abstractA random walk model for the spatially discretized time-dependent Schrödinger equation is constructed. The model consists of a class of piecewise deterministic Markov processes. The states of the processes are characterized by a position and a complex-valued weight. Jumps occur both on the spatial grid and in the space of weights. Between the jumps, the weights change according to deterministic rules. The main result is that certain functionals of the processes satisfy the Schrödinger equation.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/1894
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3311
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherSchrödinger equationeng
dc.subject.otherprobabilistic representationeng
dc.subject.otherrandom walk modeleng
dc.subject.otherpiecewise deterministic Markov processeng
dc.titleA random walk model for the Schrödinger equationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
868661112.pdf
Size:
143.66 KB
Format:
Adobe Portable Document Format
Description: