Secondary electron emission under magnetic constraint: from Monte Carlo simulations to analytical solution

Loading...
Thumbnail Image
Date
2021
Volume
11
Issue
1
Journal
Scientific Reports
Series Titel
Book Title
Publisher
[London] : Springer Nature
Abstract

The secondary electron emission process is essential for the optimal operation of a wide range of applications, including fusion reactors, high-energy accelerators, or spacecraft. The process can be influenced and controlled by the use of a magnetic field. An analytical solution is proposed to describe the secondary electron emission process in an oblique magnetic field. It was derived from Monte Carlo simulations. The analytical formula captures the influence of the magnetic field magnitude and tilt, electron emission energy, electron reflection on the surface, and electric field intensity on the secondary emission process. The last two parameters increase the effective emission while the others act the opposite. The electric field effect is equivalent to a reduction of the magnetic field tilt. A very good agreement is shown between the analytical and numerical results for a wide range of parameters. The analytical solution is a convenient tool for the theoretical study and design of magnetically assisted applications, providing realistic input for subsequent simulations.

Description
Keywords
Citation
Costin, C. (2021). Secondary electron emission under magnetic constraint: from Monte Carlo simulations to analytical solution ([London] : Springer Nature). [London] : Springer Nature. https://doi.org//10.1038/s41598-021-81345-x
Collections
License
CC BY 4.0 Unported