Stochastic homogenization on perforated domains III -- General estimates for stationary ergodic random connected Lipschitz domains

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2932
dc.contributor.authorHeida, Martin
dc.date.accessioned2022-07-08T13:04:39Z
dc.date.available2022-07-08T13:04:39Z
dc.date.issued2022
dc.description.abstractThis is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from W 1,p to W 1,r, r < p, we will show that the existence of such extension operators can be guarantied if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant M, the local Lipschitz radius Δ , the mesoscopic Voronoi diameter ∂ and the local connectivity radius R.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9690
dc.identifier.urihttps://doi.org/10.34657/8728
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2932
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherStochastic homogenizationeng
dc.subject.otherstochastic geometryeng
dc.subject.otherextension operatorseng
dc.titleStochastic homogenization on perforated domains III -- General estimates for stationary ergodic random connected Lipschitz domainseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent20 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2932.pdf
Size:
408.12 KB
Format:
Adobe Portable Document Format
Description: