Bootstrap confidence sets under a model misspecification

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1992
dc.contributor.authorSpokoiny, Vladimir
dc.contributor.authorZhilova, Mayya
dc.date.accessioned2016-03-24T17:37:01Z
dc.date.available2019-06-28T08:12:24Z
dc.date.issued2014
dc.description.abstractA multiplier bootstrap procedure for construction of likelihood-based confidence sets is considered for finite samples and possible model misspecification. Theoretical results justify the bootstrap consistency for small or moderate sample size and allow to control the impact of the parameter dimension: the bootstrap approximation works if the ratio of cube of the parameter dimension to the sample size is small. The main result about bootstrap consistency continues to apply even if the underlying parametric model is misspecified under the so called Small Modeling Bias condition. In the case when the true model deviates significantly from the considered parametric family, the bootstrap procedure is still applicable but it becomes a bit conservative: the size of the constructed confidence sets is increased by the modeling bias. We illustrate the results with numerical examples of misspecified constant and logistic regressions.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2070
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2867
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherLikelihood-based confidence seteng
dc.subject.othermisspecified modeleng
dc.subject.otherfinite sample sizeeng
dc.subject.othermultiplier bootstrapeng
dc.titleBootstrap confidence sets under a model misspecificationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
813159504.pdf
Size:
632.28 KB
Format:
Adobe Portable Document Format
Description: