Microtubular Gas Diffusion Electrode Based on Ruthenium-Carbon Nanotubes for Ambient Electrochemical Nitrogen Reduction to Ammonia

dc.bibliographicCitation.firstPage4679eng
dc.bibliographicCitation.issue22eng
dc.bibliographicCitation.journalTitleChemElectroChemeng
dc.bibliographicCitation.lastPage4684eng
dc.bibliographicCitation.volume7eng
dc.contributor.authorWei, Xin
dc.contributor.authorVogel, Dominik
dc.contributor.authorKeller, Laura
dc.contributor.authorKriescher, Stefanie
dc.contributor.authorWessling, Matthias
dc.date.accessioned2021-07-29T13:10:56Z
dc.date.available2021-07-29T13:10:56Z
dc.date.issued2020
dc.description.abstractThe drawback of the energy-intensive Haber-Bosch process promotes the research and development of alternative ammonia (NH3) synthesis approaches. The electrochemical nitrogen (N2) reduction reaction (eNRR) may offer a promising method to produce NH3 independent of fossil-fuel-based hydrogen production. However, the low solubility and the low-efficiency mass transport of N2 in aqueous electrolytes are still among the challenges facing the feasibility of eNRR. Herein, we demonstrate a microtubular ruthenium-carbon nanotube gas diffusion electrode (Ru−CNT GDE), for the first time, applying it to electrochemical NH3 synthesis in an H-type cell under ambient conditions. The highest reported Ru-catalyzed NH3 yield rate of 2.1×10−9 mol/cm2 s and high faradaic efficiency of 13.5 % were achieved, showing the superior effect of Ru−CNT GDEs on the eNRR performance. This work provides a new approach for the design and fabrication of self-standing catalyst-loaded GDEs for eNRR. © 2020 The Authors. ChemElectroChem published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6416
dc.identifier.urihttps://doi.org/10.34657/5463
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/celc.202001370
dc.relation.essn2196-0216
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject.ddc540eng
dc.subject.otherambient ammonia synthesiseng
dc.subject.otherelectrochemical nitrogen reductioneng
dc.subject.othermass transfer enhancementeng
dc.subject.othermicrotubular gas diffusion electrodeeng
dc.subject.otherruthenium nanoparticleseng
dc.titleMicrotubular Gas Diffusion Electrode Based on Ruthenium-Carbon Nanotubes for Ambient Electrochemical Nitrogen Reduction to Ammoniaeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
celc.202001370.pdf
Size:
780.42 KB
Format:
Adobe Portable Document Format
Description:
Collections