Medical Imaging of Microrobots: Toward In Vivo Applications

Abstract

Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.

Description
Keywords
in vivo imaging, in vivo navigation, medical microrobots, micromotors imaging, microrobot actuation, real-time tracking, swarm tracking, target monitoring, targeted therapy
Citation
Aziz, A., Pane, S., Iacovacci, V., Koukourakis, N., Czarske, J., Menciassi, A., et al. (2020). Medical Imaging of Microrobots: Toward In Vivo Applications. 14(9). https://doi.org//10.1021/acsnano.0c05530
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.