Stability analysis of non-constant base states in thin film equations

Loading...
Thumbnail Image

Date

Volume

1883

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We address the linear stability of non-constant base states within the class of mass conserving free boundary problems for degenerate and non-degenerate thin film equations. Well-known examples are the finger-instabilities of growing rims that appear in retracting thin solid and liquid films. Since the base states are time dependent and do not have a simple travelling wave or self-similar form, a classical eigenvalue analysis fails to provide the dominant wavelength of the instability. However, the initial fronts evolve on a slower time-scale than the typical perturbations. We exploit this time-scale separation and develop a multiple-scale approach for this class of stability problems. We show that the value of the dominant wavelength is rapidly attained once the base state has entered an approximately self-similar scaling. We note that this value is different from the one obtained by the linear stability analysis with "frozen modes", frequently found in the literature. Furthermore we show that for the present class of stability problems the dispersion relation behaves linear for large wavelengths, which is in contrast to many other instability problems in thin film flows.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.