Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Pressure- and Temperature-Dependent Crystallization Kinetics of Isotactic Polypropylene under Process Relevant Conditions

2021, Spoerer, Yvonne, Boldt, Regine, Androsch, René, Kuehnert, Ines

In this study, a non-nucleated homopolymer (HP) and random copolymer (RACO), as well as a nucleated HP and heterophasic copolymer (HECO) were investigated regarding their crystallization kinetics. Using pvT-measurements and fast scanning chip calorimetry (FSC), the crystallization behavior was analyzed as a function of pressure, cooling rate and temperature. It is shown that pressure and cooling rate have an opposite influence on the crystallization temperature of the materials. Furthermore, the addition of nucleating agents to the material has a significant effect on the maximum cooling rate at which the formation of α-crystals is still possible. The non-nucleated HP and RACO materials show significant differences that can be related to the sterically hindering effect of the comonomer units of RACO on crystallization, while the nucleated materials HP and HECO show similar crystallization kinetics despite their different structures. The pressure-dependent shift factor of the crystallization temperature is independent of the material. The results contribute to the description of the relationship between the crystallization kinetics of the material and the process parameters influencing the injection-molding induced morphology. This is required to realize process control in injection molding in order to produce pre-defined morphologies and to design material properties.

Loading...
Thumbnail Image
Item

Effect of Molar Mass on Critical Specific Work of Flow for Shear-Induced Crystal Nucleation in Poly (l-Lactic Acid)

2021, Du, Mengxue, Jariyavidyanont, Katalee, KĂ¼hnert, Ines, Boldt, Regine, Androsch, RenĂ©

The concept of specific work of flow has been applied for the analysis of critical shearing conditions for the formation of crystal nuclei in poly (l-lactic acid) (PLLA). Systematic variation in both time and rate of shearing the melt in a parallel-plate rheometer revealed that these parameters are interconvertible regarding the shear-induced formation of crystal nuclei; that is, low shear rate can be compensated for by increasing the shear time and vice versa. This result supports the view that critical shearing conditions can be expressed by a single quantity, providing additional options for tailoring polymer processing routes when enhanced nuclei formation is desired/unwanted. Analysis of PLLA of different mass-average molar masses of 70, 90, 120, and 576 kDa confirmed improved shear-induced crystal nucleation for materials of higher molar mass, with critical specific works of flow, above which shear-induced nuclei formation occurs, of 550, 60, 25, and 5 kPa, respectively.

Loading...
Thumbnail Image
Item

Correlation between Processing Parameters, Morphology, and Properties of Injection-Molded Polylactid Acid (PLA) Specimens at Different Length Scales

2023, Meinig, Laura, Boldt, Regine, Spoerer, Yvonne, Kuehnert, Ines, Stommel, Markus

Polylactic acid (PLA) is one of the most promising bioplastic representatives that finds application in many different areas, e.g., as single-use products in the packaging industry, in the form of mulch film for agriculture, or in medical devices. For the development of new areas, especially in terms of long-term applications and the production of recyclable products, the material properties controlled by processing must be known. The state of the art is investigations at the global scale (integral values) without consideration of local structure inhomogeneities and their influence on the material properties. In this work, morphological, thermal, and mechanical properties of injection-molded PLA tensile bars are investigated at different length scales (global and local) as a function of processing parameters. In addition to the processing parameters, such as melt temperature, mold temperature, and cooling time in the mold, the influence of the D-isomer content on the crystallization behavior and the resulting material properties are investigated. The material was found to form crystalline structures only when cooled in a mold tempered above Tg. In addition, PLA with a lower content of D-isomer was found to have a higher degree of crystallinity. Since the mechanical properties obtained by tensile tests could not be correlated with the degree of crystallinity, detailed analysis were performed showing a characteristic inhomogeneous morphology within the tensile bars. By means of micromechanical investigations on samples with different microstructure ranges, the relationship between local morphology and failure behavior could be explained.

Loading...
Thumbnail Image
Item

The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component

2021-3-1, GĂ¼ltner, MarĂ©n, Boldt, Regine, Formanek, Petr, Fischer, Dieter, Simon, Frank, Pötschke, Petra

Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.

Loading...
Thumbnail Image
Item

A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide

2021, Huang, Ying, MĂ¼ller, Michael Thomas, Boldt, Regine, Zschech, Carsten, Gohs, Uwe, WieĂŸner, Sven

Biodegradable polylactide/masticated natural rubber (PLA/mNR) blends were prepared by electron induced reactive processing (EIReP) without using any chemical additives. The PLA/mNR blends showed droplet-matrix morphology with decreased mNR particle size after EIReP treatment. The absolute value of complex viscosity and storage modulus increased significantly for the EIReP modified blends, suggesting the improved melt strength and elasticity. The crystallization investigation showed that the cold crystallization peak of PLA phase gradually disappeared after EIReP modification. Instead, the crystallization peak arose during melt cooling process. Consequently, the crystallinity of PLA phase increased from 6.2% to 39.0% as the mNR content increased from 0 to 20 wt%. It was found that the softening temperature of PLA examined by dynamic mechanical analysis increased effectively with the characters of higher modulus compared to the non-modified blends. The EIReP modified blends exhibited excellent mechanical properties with 7-fold increase of impact toughness compared with neat PLA, implying a superior interfacial adhesion and chain interactions between the two polymer phases. Furthermore, the thermogravimetric analysis demonstrated that the thermal stability was slightly enhanced for the EIReP modified blends.

Loading...
Thumbnail Image
Item

Barrier properties of GnP-PA-extruded films

2020, Boldt, Regine, Leuteritz, Andreas, Schob, Daniela, Ziegenhorn, Matthias, Wagenknecht, Udo

It is generally known that significant improvements in the properties of nanocomposites can be achieved with graphene types currently commercially available. However, so far this is only possible on a laboratory scale. Thus, the aim of this study was to transfer results from laboratory scale experiments to industrial processes. Therefore, nanocomposites based on polyamide (PA) and graphene nanoplatelets (GnP) were prepared in order to produce membranes with improved gas barrier properties, which are characterized by reduced permeation rates of helium. First, nanocomposites were prepared with different amounts of commercial availably graphene nanoplatelets using a semi-industrial-scale compounder. Subsequently, films were produced by compression molding at different temperatures, as well as by flat film extrusion. The extruded films were annealed at different temperatures and durations. In order to investigate the effect of thermal treatment on barrier properties in correlation to thermal, structural, and morphological properties, the films were characterized by differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), optical microscopy (OM), transmission electron microscopy (TEM), melt rheology measurements, and permeation measurements. In addition to structural characterization, mechanical properties were investigated. The results demonstrate that the permeation rate is strongly influenced by the processing conditions and the filler content. If the filler content is increased, the permeation rate is reduced. The annealing process can further enhance this effect.

Loading...
Thumbnail Image
Item

Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan

2020, WeiĂŸpflog, Janek, GĂ¼ndel, Alexander, Vehlow, David, Steinbach, Christine, MĂ¼ller, Martin, Boldt, Regine, Schwarz, Simona, Schwarz, Dana

The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Complex calcium carbonate/polymer microparticles as carriers for aminoglycoside antibiotics

2018, Racovita, Stefania, Vasiliu, Ana-Lavinia, Bele, Adrian, Schwarz, Dana, Steinbach, Christine, Boldt, Regine, Schwarz, Simona, Mihai, Marcela

Composite microparticles of CaCO3 and two pectin samples (which differ by the functional group ratio) or corresponding nonstoichiometric polyelectrolyte complexes with different molar ratios (0.5, 0.9 and 1.2) are obtained, characterized and tested for loading and release of streptomycin and kanamycin sulphate. The synthesized carriers were characterized before and after drug loading in terms of morphology (by SEM using secondary electron and energy selective backscattered electron detectors), porosity (by water sorption isotherms) and elemental composition (by elemental mapping using energy dispersive X-ray and FTIR spectroscopy). The kinetics of the release mechanism from the microparticles was investigated using Higuchi and Korsmeyer-Peppas mathematical models.

Loading...
Thumbnail Image
Item

Comparison of transition metal (Fe, Co, Ni, Cu, and Zn) containing tri-metal layered double hydroxides (LDHs) prepared by urea hydrolysis

2019, Naseem, Sajid, Gevers, Bianca, Boldt, Regine, LabuschagnĂ©, Frederick J. W. J., Leuteritz, Andreas

This paper details a successful synthesis and comparison of a range of tri-metal hydrotalcite-like layered double hydroxides (LDHs) using urea hydrolysis. Transition-metal-substituted MgMAl-LDHs were synthesized with M = Fe, Co, Ni, Cu or Zn. 5 mol% and 10 mol% substitutions were performed, where Mg was substituted with Co, Ni, Cu and Zn, and Al with Fe. The successful synthesis of crystalline MgMAl-LDHs was confirmed using X-ray powder diffraction (XRD) analysis. Energy-dispersive X-ray (EDX) spectroscopy was used to identify substituted metals and determine changes in composition. Changes in morphology were studied using scanning electron microscopy (SEM). Thermogravimetric analysis was used to determine the effect of Fe-, Co-, Ni-, Cu- or Zn-substitution on the thermal degradation of the MgMAl-LDH phase. The structure, morphology and thermal behavior of the LDHs were shown to be influenced by the substituted transition metals. The observed thermal stability took the order MgNiAl- > MgFeAl- = MgAl- ≥ MgCoAl- > MgCuAl- > MgZnAl-LDH. The urea hydrolysis method was shown to be a simple preparation method for well-defined crystallite structures with large hexagonal platelets and good distribution of transition metal atoms in the substituted LDHs. © 2019 The Royal Society of Chemistry.