Search Results

Now showing 1 - 10 of 52
Loading...
Thumbnail Image
Item

Constrained evolution for a quasilinear parabolic equation

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the CauchyNeumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set K of L2 (Omega). Then, we consider convex sets of obstacle or double-obstacle type, and we can act on the factor of the feedback control in order to be able to reach the convex set within a finite time, by proving rigorously this property.

Loading...
Thumbnail Image
Item

Optimal distributed control of a diffuse interface model of tumor growth

2016, Colli, Pierluigi, Gilardi, Gianni, Rocca, Elisabetta, Sprekels, Jürgen

In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by HawkinsDaruud et al. in [25]. The model consists of a CahnHilliard equation for the tumor cell fraction 'coupled to a reaction-diffusion equation for a function phi representing the nutrientrich extracellular water volume fraction. The distributed control u monitors as a right-hand side the equation for sigma and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

Loading...
Thumbnail Image
Item

Regularity of the solution to a nonstandard system of phase field equations

2013, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A nonstandard systems of differential equations describing two-species phase segregation is considered. This system naturally arises in the asymptotic analysis recently done by Colli, Gilardi, Krej¡cí, and Sprekels as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, a well-posedness result is proved for the limit system. This paper deals with the above limit problem in a less general but still very significant framework and provides a very simple proof of further regularity for the solution. As a byproduct, a simple uniqueness proof is given as well.

Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of CahnHilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. The local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors the nonlocal model studied here consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called deep quench approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.

Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard system of phase field equations : dedicated to Prof. Dr. Ingo Müller on the occasion of his 75th birthday

2011, Colli, Pierluigi, Gilardi, Gianni, Podio-Guidugli, Paolo, Sprekels, Jürgen, Müller, Ingo

We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard type. The model describes two-species phase segregation on an atomic lattice under the presence of diffusion; it has been introduced recently in [4], on the basis of the theory developed in [15], and consists of a system of two highly nonlinearly coupled PDEs. For this reason, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

Loading...
Thumbnail Image
Item

Distributed optimal control of a nonstandard nonlocal phase field system

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

Loading...
Thumbnail Image
Item

Optimal boundary control of a nonstandard viscous Cahn-Hilliard system with dynamic boundary condition

2016, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing control literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter of the system, which models an additional nonconserving phase transition occurring on the surface of the domain. We show the Fréchet differentiability of the associated control-to-state operator in appropriate Banach spaces and derive results on the existence of optimal controls and on first-order necessary optimality conditions in terms of a variational inequality and the adjoint state system.

Loading...
Thumbnail Image
Item

Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials

2019, Colli, Pierluigi, Signori, Andrea, Sprekels, Jürgen

A distributed optimal control problem for an extended model of phase field type for tumor growth is addressed. In this model, the chemotaxis effects are also taken into account. The control is realized by two control variables that design the dispensation of some drugs to the patient. The cost functional is of tracking type, whereas the potential setting has been kept quite general in order to allow regular and singular potentials to be considered. In this direction, some relaxation terms have been introduced in the system. We show the well-posedness of the state system, the Fréchet differentiability of the control-to-state operator in a suitable functional analytic framework, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a variational inequality involving the adjoint variables.

Loading...
Thumbnail Image
Item

Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth

2015, Colli, Pierluigi, Gilardi, Gianni, Rocca, Elisabetta, Sprekels, Jürgen

In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn--Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in [Colli-Gilardi-Hilhorst 2015], letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.

Loading...
Thumbnail Image
Item

Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis

2020, Colli, Pierluigi, Signori, Andrea, Sprekels, Jürgen

This paper concerns a distributed optimal control problem for a tumor growth model of Cahn--Hilliard type including chemotaxis with possibly singular anpotentials, where the control and state variables are nonlinearly coupled. First, we discuss the weak well-posedness of the system under very general assumptions for the potentials, which may be singular and nonsmooth. Then, we establish the strong well-posedness of the system in a reduced setting, which however admits the logarithmic potential: this analysis will lay the foundation for the study of the corresponding optimal control problem. Concerning the optimization problem, we address the existence of minimizers and establish both first-order necessary and second-order sufficient conditions for optimality. The mathematically challenging second-order analysis is completely performed here, after showing that the solution mapping is twice continuously differentiable between suitable Banach spaces via the implicit function theorem. Then, we completely identify the second-order Fréchet derivative of the control-to-state operator and carry out a thorough and detailed investigation about the related properties.