Search Results

Now showing 1 - 7 of 7
  • Item
    Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
    (Amsterdam : Elsevier, 2022) Dvurechensky, Pavel; Kamzolov, Dmitry; Lukashevich, Aleksandr; Lee, Soomin; Ordentlich, Erik; Uribe, César A.; Gasnikov, Alexander
    Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
  • Item
    First-Order Methods for Convex Optimization
    (Amsterdam : Elsevier, 2021) Dvurechensky, Pavel; Shtern, Shimrit; Staudigl, Mathias
    First-order methods for solving convex optimization problems have been at the forefront of mathematical optimization in the last 20 years. The rapid development of this important class of algorithms is motivated by the success stories reported in various applications, including most importantly machine learning, signal processing, imaging and control theory. First-order methods have the potential to provide low accuracy solutions at low computational complexity which makes them an attractive set of tools in large-scale optimization problems. In this survey, we cover a number of key developments in gradient-based optimization methods. This includes non-Euclidean extensions of the classical proximal gradient method, and its accelerated versions. Additionally we survey recent developments within the class of projection-free methods, and proximal versions of primal-dual schemes. We give complete proofs for various key results, and highlight the unifying aspects of several optimization algorithms.
  • Item
    Accelerated variance-reduced methods for saddle-point problems
    (Amsterdam : Elsevier, 2022) Borodich, Ekaterina; Tominin, Vladislav; Tominin, Yaroslav; Kovalev, Dmitry; Gasnikov, Alexander; Dvurechensky, Pavel
    We consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.
  • Item
    Generalized self-concordant analysis of Frank–Wolfe algorithms
    (Berlin ; Heidelberg : Springer, 2022) Dvurechensky, Pavel; Safin, Kamil; Shtern, Shimrit; Staudigl, Mathias
    Projection-free optimization via different variants of the Frank–Wolfe method has become one of the cornerstones of large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant functions do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex, making them a challenging class of functions for first-order methods. Indeed, in a number of applications, such as inverse covariance estimation or distance-weighted discrimination problems in binary classification, the loss is given by a generalized self-concordant function having potentially unbounded curvature. For such problems projection-free minimization methods have no theoretical convergence guarantee. This paper closes this apparent gap in the literature by developing provably convergent Frank–Wolfe algorithms with standard O(1/k) convergence rate guarantees. Based on these new insights, we show how these sublinearly convergent methods can be accelerated to yield linearly convergent projection-free methods, by either relying on the availability of a local liner minimization oracle, or a suitable modification of the away-step Frank–Wolfe method.
  • Item
    Zeroth-order algorithms for smooth saddle-point problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Sadiev, Abdurakhmon; Beznosikov, Aleksandr; Dvurechensky, Pavel; Gasnikov, Alexander
    Saddle-point problems have recently gained an increased attention from the machine learning community, mainly due to applications in training Generative Adversarial Networks using stochastic gradients. At the same time, in some applications only a zeroth-order oracle is available. In this paper, we propose several algorithms to solve stochastic smooth (strongly) convex-concave saddle- point problems using zeroth-order oracles, and estimate their convergence rate and its dependence on the dimension n of the variable. In particular, our analysis shows that in the case when the feasible set is a direct product of two simplices, our convergence rate for the stochastic term is only by a log n factor worse than for the first-order methods. We also consider a mixed setup and develop 1/2th-order methods which use zeroth-order oracle for the minimization part and first-order oracle for the maximization part. Finally, we demonstrate the practical performance of our zeroth-order and 1/2th-order methods on practical problems.
  • Item
    Inexact tensor methods and their application to stochastic convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Agafonov, Artem; Kamzolov, Dmitry; Dvurechensky, Pavel; Gasnikov, Alexander
    We propose a general non-accelerated tensor method under inexact information on higher- order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.
  • Item
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Ostroukhov, Petr; Kamalov, Rinat; Dvurechensky, Pavel; Gasnikov, Alexander
    In this paper we propose three tensor methods for strongly-convex-strongly-concave saddle point problems (SPP). The first method is based on the assumption of higher-order smoothness (the derivative of the order higher than 2 is Lipschitz-continuous) and achieves linear convergence rate. Under additional assumptions of first and second order smoothness of the objective we connect the first method with a locally superlinear converging algorithm in the literature and develop a second method with global convergence and local superlinear convergence. The third method is a modified version of the second method, but with the focus on making the gradient of the objective small. Since we treat SPP as a particular case of variational inequalities, we also propose two methods for strongly monotone variational inequalities with the same complexity as the described above.