Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this paper we propose three tensor methods for strongly-convex-strongly-concave saddle point problems (SPP). The first method is based on the assumption of higher-order smoothness (the derivative of the order higher than 2 is Lipschitz-continuous) and achieves linear convergence rate. Under additional assumptions of first and second order smoothness of the objective we connect the first method with a locally superlinear converging algorithm in the literature and develop a second method with global convergence and local superlinear convergence. The third method is a modified version of the second method, but with the focus on making the gradient of the objective small. Since we treat SPP as a particular case of variational inequalities, we also propose two methods for strongly monotone variational inequalities with the same complexity as the described above.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.