Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2820
dc.contributor.authorOstroukhov, Petr
dc.contributor.authorKamalov, Rinat
dc.contributor.authorDvurechensky, Pavel
dc.contributor.authorGasnikov, Alexander
dc.date.accessioned2022-07-05T14:00:02Z
dc.date.available2022-07-05T14:00:02Z
dc.date.issued2021
dc.description.abstractIn this paper we propose three tensor methods for strongly-convex-strongly-concave saddle point problems (SPP). The first method is based on the assumption of higher-order smoothness (the derivative of the order higher than 2 is Lipschitz-continuous) and achieves linear convergence rate. Under additional assumptions of first and second order smoothness of the objective we connect the first method with a locally superlinear converging algorithm in the literature and develop a second method with global convergence and local superlinear convergence. The third method is a modified version of the second method, but with the focus on making the gradient of the objective small. Since we treat SPP as a particular case of variational inequalities, we also propose two methods for strongly monotone variational inequalities with the same complexity as the described above.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9538
dc.identifier.urihttps://doi.org/10.34657/8576
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2820
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherVariational inequalityeng
dc.subject.othersaddle point problemeng
dc.subject.otherhigh-order smoothnesseng
dc.subject.othertensor methodseng
dc.subject.othergradient norm minimizationeng
dc.titleTensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalitieseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent20 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2820.pdf
Size:
309.33 KB
Format:
Adobe Portable Document Format
Description: