Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2820 | |
dc.contributor.author | Ostroukhov, Petr | |
dc.contributor.author | Kamalov, Rinat | |
dc.contributor.author | Dvurechensky, Pavel | |
dc.contributor.author | Gasnikov, Alexander | |
dc.date.accessioned | 2022-07-05T14:00:02Z | |
dc.date.available | 2022-07-05T14:00:02Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper we propose three tensor methods for strongly-convex-strongly-concave saddle point problems (SPP). The first method is based on the assumption of higher-order smoothness (the derivative of the order higher than 2 is Lipschitz-continuous) and achieves linear convergence rate. Under additional assumptions of first and second order smoothness of the objective we connect the first method with a locally superlinear converging algorithm in the literature and develop a second method with global convergence and local superlinear convergence. The third method is a modified version of the second method, but with the focus on making the gradient of the objective small. Since we treat SPP as a particular case of variational inequalities, we also propose two methods for strongly monotone variational inequalities with the same complexity as the described above. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9538 | |
dc.identifier.uri | https://doi.org/10.34657/8576 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2820 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Variational inequality | eng |
dc.subject.other | saddle point problem | eng |
dc.subject.other | high-order smoothness | eng |
dc.subject.other | tensor methods | eng |
dc.subject.other | gradient norm minimization | eng |
dc.title | Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 20 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2820.pdf
- Size:
- 309.33 KB
- Format:
- Adobe Portable Document Format
- Description: