Search Results

Now showing 1 - 10 of 10
  • Item
    Multiple lobes in the far-field distribution of terahertz quantum-cascade lasers due to self-interference
    (New York : American Institute of Physics, 2016) Röben, B.; Wienold, M.; Schrottke, L.; Grahn, H.T.
    The far-field distribution of the emission intensity of terahertz (THz) quantumcascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from selfinterference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.
  • Item
    Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers
    (New York, NY : American Inst. of Physics, 2022) Schrottke, L.; Lü, X.; Biermann, K.; Gellie, P.; Grahn, H.T.
    We have investigated high-performance GaAs/AlAs terahertz (THz) quantum-cascade lasers (QCLs) with respect to the long-term stability of their operating parameters. The output power of lasers that contain an additional, thick AlAs refractive-index contrast layer underneath the cascade structure decreases after three months by about 35%. The deterioration of these lasers is attributed to the oxidation processes in this contrast layer starting from the facets. However, GaAs/AlAs THz QCLs with an Al0.9Ga0.1As refractive-index contrast layer exhibit long-term stability of the operating parameters over many years even when they are exposed to atmospheric conditions. Therefore, these lasers are promising high-power radiation sources in the terahertz spectral region for commercial applications.
  • Item
    Advances in group-III-nitride photodetectors
    (Sharjah [u.a.] : Bentham Open, 2010) Rivera, C.; Pereiro, J.; Navarro, A.; Muñoz, E.; Brandt, O.; Grahn, H.T.
    Group-III nitrides are considered to be a strategic technology for the development of ultraviolet photodetectors due to their remarkable properties in terms of spectral selectivity, radiation hardness, and noise. The potential advantages of these materials were initially obscured by their large density of intrinsic defects. The advances were thus associated in general with improvements in material quality. Although technology still also needs improvement, efforts are being intensified in the fabrication of advanced structures for photodetector applications. In particular, this review discusses the recent progress in group-III-nitride photodetectors, emphasizing the work reported on quantum-well-based photodetectors, the use of novel structures exploiting the effect of piezoelectric polarization-induced fields, and polarization-sensitive photodetectors. Furthermore, some ideas can be generalized to other material systems such as ZnO and their related compounds, which exhibit the same crystal structure as group-III nitrides. © Rivera et al.; Licensee Bentham Open.
  • Item
    A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler
    (Washington, DC : Optical Society of America, 2010) Richter, H.; Greiner-Bär, M.; Pavlov, S.G.; Semenov, A.D.; Wienold, M.; Schrottke, L.; Giehler, M.; Hey, R.; Grahn, H.T.; Hübers, H.-W.
    We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments.
  • Item
    Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser
    (Washington, DC : Optical Society of America, 2014) Wienold, M.; Röben, B.; Schrottke, L.; Grahn, H.T.
    We report on a broad-band terahertz quantum-cascade laser (QCL) with a long Fabry-Pérot ridge cavity, for which the tuning range of the individual laser modes exceeds the mode spacing. While a spectral range of approximately 60 GHz (2 cm−1) is continuously covered by current and temperature tuning, the total emission range spans more than 270 GHz (9 cm−1). Within certain operating ranges, we found evidence for stable frequency comb operation of the QCL. An experimental technique is presented to characterize frequency comb operation, which is based on the self-mixing effect.
  • Item
    High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback
    (Washington, DC : Optical Society of America, 2014) Wienold, M.; Röben, B.; Schrottke, L.; Sharma, R.; Tahraoui, A.; Biermann, K.; Grahn, H.T.
    Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (≤ 15 μm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters.
  • Item
    Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers
    (Washington, DC : Optical Society of America, 2012) Wienold, M.; Tahraoui, A.; Schrottke, L.; Sharma, R.; Lü, X.; Biermann, K.; Hey, R.; Grahn, H.T.
    We report on terahertz quantum-cascade lasers (THz QCLs) based on first-order lateral distributed-feedback (lDFB) gratings, which exhibit continuous-wave operation, high output powers (>8 mW), and single-mode emission at 3.3–3.4 THz. A general method is presented to determine the coupling coefficients of lateral gratings in terms of the coupled-mode theory, which demonstrates that large coupling strengths are obtained in the presence of corrugated metal layers. The experimental spectra are in agreement with simulations of the lDFB cavities, which take into account the reflective end facets.
  • Item
    Frequency modulation spectroscopy with a THz quantum-cascade laser
    (Washington, DC : Optical Society of America, 2013) Eichholz, R.; Richter, H.; Wienold, M.; Schrottke, L.; Hey, R.; Grahn, H.T.; Hübers, H.-W.
    We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.
  • Item
    Doppler-free spectroscopy with a terahertz quantum-cascade laser
    (Washington, DC : Optical Society of America, 2018) Wienold, M.; Alam, T.; Schrottke, L.; Grahn, H.T.; Hübers, H.-W.
    We report on the Doppler-free saturation spectroscopy of a molecular transition at 3.3 THz based on a quantum-cascade laser and an absorption cell in a collinear pump-probe configuration. A Lamb dip with a sub-Doppler linewidth of 170 kHz is observed for a rotational transition of HDO. We found that a certain level of external optical feedback is tolerable as long as the free spectral range of the external cavity is large compared to the width of the absorption line.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.