Search Results

Now showing 1 - 2 of 2
  • Item
    A versatile and customizable low-cost 3D-printed open standard for microscopic imaging
    ([London] : Nature Publishing Group UK, 2020) Diederich, Benedict; Lachmann, René; Carlstedt, Swen; Marsikova, Barbora; Wang, Haoran; Uwurukundo, Xavier; Mosig, Alexander S.; Heintzmann, Rainer
    Modern microscopes used for biological imaging often present themselves as black boxes whose precise operating principle remains unknown, and whose optical resolution and price seem to be in inverse proportion to each other. With UC2 (You. See. Too.) we present a low-cost, 3D-printed, open-source, modular microscopy toolbox and demonstrate its versatility by realizing a complete microscope development cycle from concept to experimental phase. The self-contained incubator-enclosed brightfield microscope monitors monocyte to macrophage cell differentiation for seven days at cellular resolution level (e.g. 2 μm). Furthermore, by including very few additional components, the geometry is transferred into a 400 Euro light sheet fluorescence microscope for volumetric observations of a transgenic Zebrafish expressing green fluorescent protein (GFP). With this, we aim to establish an open standard in optics to facilitate interfacing with various complementary platforms. By making the content and comprehensive documentation publicly available, the systems presented here lend themselves to easy and straightforward replications, modifications, and extensions.
  • Item
    simpleISM—A straight forward guide to upgrade from confocal to ISM
    (San Francisco, California, US : PLOS, 2022) Goswami, Monalisa; Lachmann, René; Kretschmer, Robert; Heintzmann, Rainer
    Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations.