Search Results

Now showing 1 - 10 of 20
  • Item
    Exponential Moments for Planar Tessellations
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Jahnel, Benedikt; Tóbiás, András
    In this paper we show existence of all exponential moments for the total edge length in a unit disk for a family of planar tessellations based on stationary point processes. Apart from classical tessellations such as the Poisson–Voronoi, Poisson–Delaunay and Poisson line tessellation, we also treat the Johnson–Mehl tessellation, Manhattan grids, nested versions and Palm versions. As part of our proofs, for some planar tessellations, we also derive existence of exponential moments for the number of cells and the number of edges intersecting the unit disk.
  • Item
    Sharp phase transition for Cox percolation
    (Seattle, Wash. : Univ. of Washington, Mathematics Dep., 2022) Hirsch, Christian; Jahnel, Benedikt; Muirhead, Stephen
    We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence, satisfies a local boundedness condition and can be constructed from a discrete iid random field, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction that allows us to compare different notions of influence.
  • Item
    Phase transitions for chase-escape models on Poisson–Gilbert graphs
    ([Madralin] : EMIS ELibEMS, 2020) Hinsen, Alexander; Jahnel, Benedikt; Cali, Elie; Wary, Jean-Philippe
    We present results on phase transitions of local and global survival in a two-species model on Poisson–Gilbert graphs. Initially, there is an infection at the origin that propagates on the graph according to a continuous-time nearest-neighbor interacting particle system. The graph consists of susceptible nodes and nodes of a second type, which we call white knights. The infection can spread on susceptible nodes without restriction. If the infection reaches a white knight, this white knight starts to spread on the set of infected nodes according to the same mechanism, with a potentially different rate, giving rise to a competition of chase and escape. We show well-definedness of the model, isolate regimes of global survival and extinction of the infection and present estimates on local survival. The proofs rest on comparisons to the process on trees, percolation arguments and finite-degree approximations of the underlying random graphs.
  • Item
    Lower large deviations for geometric functionals
    ([Madralin] : EMIS ELibEMS, 2020) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson–Voronoi cells, as well as power-weighted edge lengths in the random geometric, k-nearest neighbor and relative neighborhood graph.
  • Item
    Gibbsianness and non-Gibbsianness for Bernoulli lattice fields under removal of isolated sites
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Jahnel, Benedikt; Külske, Christof
    We consider the i.i.d. Bernoulli field μ p on Z d with occupation density p ∈ [0,1]. To each realization of the set of occupied sites we apply a thinning map that removes all occupied sites that are isolated in graph distance. We show that, while this map seems non-invasive for large p, as it changes only a small fraction p(1-p)2d of sites, there is p(d) <1 such that for all p ∈ (p(d), 1) the resulting measure is a non-Gibbsian measure, i.e., it does not possess a continuous version of its finite-volume conditional probabilities. On the other hand, for small p, the Gibbs property is preserved.
  • Item
    Dynamical Gibbs variational principles for irreversible interacting particle systems with applications to attractor properties
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Jahnel, Benedikt; Köppl, Jonas
    We consider irreversible translation-invariant interacting particle systems on the d-dimensional cubic lattice with finite local state space, which admit at least one Gibbs measure as a time-stationary measure. Under some mild degeneracy conditions on the rates and the specification we prove, that zero relative entropy loss of a translation-invariant measure implies, that the measure is Gibbs w.r.t. the same specification as the time-stationary Gibbs measure. As an application, we obtain the attractor property for irreversible interacting particle systems, which says that any weak limit point of any trajectory of translation-invariant measures is a Gibbs measure w.r.t. the same specification as the time-stationary measure. This extends previously known results to fairly general irreversible interacting particle systems.
  • Item
    Gibbsianness of locally thinned random fields
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Engler, Nils; Jahnel, Benedikt; Külske, Christof
    We consider the locally thinned Bernoulli field on ℤ d, which is the lattice version of the Type-I Matérn hardcore process in Euclidean space. It is given as the lattice field of occupation variables, obtained as image of an i.i.d. Bernoulli lattice field with occupation probability p, under the map which removes all particles with neighbors, while keeping the isolated particles. We prove that the thinned measure has a Gibbsian representation and provide control on its quasilocal dependence, both in the regime of small p, but also in the regime of large p, where the thinning transformation changes the Bernoulli measure drastically. Our methods rely on Dobrushin uniqueness criteria, disagreement percolation arguments [46], and cluster expansions
  • Item
    Continuum percolation in a nonstabilizing environment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Jahnel, Benedikt; Jhawar, Sanjoy Kumar; Vu, Anh Duc
    We prove nontrivial phase transitions for continuum percolation in a Boolean model based on a Cox point process with nonstabilizing directing measure. The directing measure, which can be seen as a stationary random environment for the classical Poisson--Boolean model, is given by a planar rectangular Poisson line process. This Manhattan grid type construction features long-range dependencies in the environment, leading to absence of a sharp phase transition for the associated Cox--Boolean model. Our proofs rest on discretization arguments and a comparison to percolation on randomly stretched lattices established in [MR2116736].
  • Item
    Stochastic homogenization on irregularly perforated domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Jahnel, Benedikt; Vu, Anh Duc
    We study stochastic homogenization of a quasilinear parabolic PDE with nonlinear microscopic Robin conditions on a perforated domain. The focus of our work lies on the underlying geometry that does not allow standard homogenization techniques to be applied directly. Instead we prove homogenization on a regularized geometry and demonstrate afterwards that the form of the homogenized equation is independent from the regularization. Then we pass to the regularization limit to obtain the anticipated limit equation. Furthermore, we show that Boolean models of Poisson point processes are covered by our approach.
  • Item
    Percolation and connection times in multi-scale dynamic networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Jahnel, Benedikt; Hirsch, Christian; Cali, Eli
    We study the effects of mobility on two crucial characteristics in multi-scale dynamic networks: percolation and connection times. Our analysis provides insights into the question, to what extent long-time averages are well-approximated by the expected values of the corresponding quantities, i.e., the percolation and connection probabilities. In particular, we show that in multi-scale models, strong random effects may persist in the limit. Depending on the precise model choice, these may take the form of a spatial birth-death process or a Brownian motion. Despite the variety of structures that appear in the limit, we show that they can be tackled in a common framework with the potential to be applicable more generally in order to identify limits in dynamic spatial network models going beyond the examples considered in the present work.