Gibbsianness and non-Gibbsianness for Bernoulli lattice fields under removal of isolated sites

Loading...
Thumbnail Image
Date
2021
Volume
2878
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider the i.i.d. Bernoulli field μ p on Z d with occupation density p ∈ [0,1]. To each realization of the set of occupied sites we apply a thinning map that removes all occupied sites that are isolated in graph distance. We show that, while this map seems non-invasive for large p, as it changes only a small fraction p(1-p)2d of sites, there is p(d) <1 such that for all p ∈ (p(d), 1) the resulting measure is a non-Gibbsian measure, i.e., it does not possess a continuous version of its finite-volume conditional probabilities. On the other hand, for small p, the Gibbs property is preserved.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.