Search Results

Now showing 1 - 10 of 16
  • Item
    Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition
    (Washington D.C. : American Chemical Society, 2016) Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Krüner, Benjamin; Grobelsek, Ingrid; Formanek, Petr; Choudhury, Soumyadip; Weingarth, Daniel; Presser, Volker
    Atomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.
  • Item
    Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2016) Fleischamann, Simon; Tolosa, Aura; Zieger, Marco; Krüner, Benjamin; Peter, Nicolas J.; Grobelsek, Ingrid; Quade, Antje; Kruth, Angela; Presser, Volker
    Atomic layer deposition has proven to be a particularly attractive approach for ecorating mesoporous carbon substrates with redox active metal oxides for lectrochemical energy storage. This study, for the first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The addition of 25 mass% TiO2 leads to expansion of the VO2 unit cell, thus greatly enhancing lithium intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge capacity of up to 382 mA h g^-1 of the composite electrode (554 mA h g^-1 per metal oxide) with an impressive capacity retention of 82 mA h g^-1 (120 mA h g^-1 per metal oxide) at a high discharge rate of 20 A g^-1 or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to a reduced potential of ^-1.8 V vs. carbon. These capacity values are among the highest reported for any metal oxide system, while in addition, upercapacitor-like power performance and longevity are achieved. At a device level, high specific energy and power of up to 110 W h kg^-1 and 6 kW kg^-1, respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; Krüner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
  • Item
    Vanadium pentoxide/carbide-derived carbon core-shell hybrid particles for high performance electrochemical energy storage
    (London [u.a.] : RSC, 2016) Zeiger, Marco; Ariyanto, Teguh; Krüner, Benjamin; Peter, Nicolas J.; Fleischmann, Simon; Etzold, Bastian J.M.; Presser, Volker
    A novel, two step synthesis is presented combining the formation of carbide-derived carbon (CDC) and redox-active vanadium pentoxide (V2O5) in a core–shell manner using solely vanadium carbide (VC) as the precursor. In a first step, the outer part of VC particles is transformed to nanoporous CDC owing to the in situ formation of chlorine gas from NiCl2 at 700 °C. In a second step, the remaining VC core is calcined in synthetic air to obtain V2O5/CDC core–shell particles. Materials characterization by means of electron microscopy, Raman spectroscopy, and X-ray diffraction clearly demonstrates the partial transformation from VC to CDC, as well as the successive oxidation to V2O5/CDC core–shell particles. Electrochemical performance was tested in organic 1 M LiClO4 in acetonitrile using half- and asymmetric full-cell configuration. High specific capacities of 420 mA h g−1 (normalized to V2O5) and 310 mA h g−1 (normalized to V2O5/CDC) were achieved. The unique nanotextured core–shell architecture enables high power retention with ultrafast charging and discharging, achieving more than 100 mA h g−1 at 5 A g−1 (rate of 12C). Asymmetric cell design with CDC on the positive polarization side leads to a high specific energy of up to 80 W h kg−1 with a superior retention of more than 80% over 10 000 cycles and an overall energy efficiency of up to 80% at low rates.
  • Item
    MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization
    (London [u.a.] : RSC, 2016) Srimuk, Pattarachai; Kaasik, Friedrich; Krüner, Benjamin; Tolosa, Aura; Fleischmann, Simon; Jäckel, Nicolas; Tekeli, Mehmet C.; Aslan, Mesut; Suss, Matthew E.; Presser, Volker
    In this proof-of-concept study, we introduce and demonstrate MXene as a novel type of intercalation electrode for desalination via capacitive deionization (CDI). Traditional CDI cells employ nanoporous carbon electrodes with significant pore volume to achieve a large desalination capacity via ion electrosorption. By contrast, MXene stores charge by ion intercalation between the sheets of its two-dimensional nanolamellar structure. By this virtue, it behaves as an ideal pseudocapacitor, that is, showing capacitive electric response while intercalating both anions and cations. We synthesized Ti3C2-MXene by the conventional process of etching ternary titanium aluminum carbide i.e., the MAX phase (Ti3AlC2) with hydrofluoric acid. The MXene material was cast directly onto the porous separator of the CDI cell without added binder, and exhibited very stable performance over 30 CDI cycles with an average salt adsorption capacity of 13 ± 2 mg g−1.
  • Item
    Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2015) Oschatz, Martin; Zeiger, Marco; Jaeckel, Nicolas; Strubel, Patrick; Borchardt, Lars; Reinhold, Romy; Nickel, Winfried; Eckert, Jürgen; Presser, Volker; Kaskel, Stefan
    A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m^2/g^-1), and large micro/mesopore volume (up to 1.67 cm^3/g^-1). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na2SO4 solution (110 F/g^-1) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g^-1).
  • Item
    A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/ barnessite-type manganese oxide nanohybrids
    (Cambridge : Royal Society of Chemistry, 2015) Makgopa, Katlego; Ejikeme, Paul M.; Jafta, Charl J.; Raju, Kumar; Zeiger, Marco; Presser, Volker; Ozoemena, Kenneth I.
    We present a study on the pseudocapacitive properties of birnessite-type MnO2 grafted on highly graphitized onion-like carbon (OLC/MnO2). In a three-electrode setup, we evaluated two different substrates, namely a platinum disc and nickel foam. The OLC/MnO2 nanohybrid exhibited a large specific capacitance (Csp) of 295 and 323 F g−1 (at 1 A g−1) for the Pt disc and Ni foam, respectively. In addition, the Ni foam substrate exhibited much higher rate capability (power density) than the Pt disc. A symmetrical two-electrode device, fabricated with the Ni foam, showed a large Csp of 254 F g−1, a specific energy density of 5.6 W h kg−1, and a high power density of 74.8 kW kg−1. These values have been the highest for onion-based electrodes so far. The device showed excellent capacity retention when subjected to voltage-holding (floating) experiments for 50 h. In addition, the device showed a very short time constant (τ = 40 ms). This high rate handling ability of the OLC/MnO2 nanohybrid, compared to literature reports, promises new opportunities for the development of aqueous-based pseudocapacitors.
  • Item
    Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids
    (Cambridge : Royal Society of Chemistry, 2015) Ewert, Julia K.; Weingarth, Daniel; Denner, Christine; Friedrich, Martin; Zeiger, Marco; Schreiber, Anna; Jäckel, Nicolas; Presser, Volker; Kempe, Rhett
    Supercapacitors combine efficient electrical energy storage and performance stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central element of existing and emerging energy concepts. A better understanding of capacitance enhancement options is essential to exploit the full potential of supercapacitors. Here, we report a novel hierarchically structured N-doped carbon material and a significant capacitance enhancement for a specific ionic liquid. Our studies indicate that matching of the electrode material and the ionic liquid specifically leads to a constant normalized resistance of the electrode material (voltage window up to ±1 V vs. carbon) and a significant enhancement of the specific capacitance. Such effects are not seen for standard organic electrolytes, non-matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material improves the symmetric full cell capacitance of the match and considerably increases its long-term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for N-doped carbons with matched ionic liquid may enable a new platform for developing supercapacitors with enhanced energy storage capacity.
  • Item
    Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering
    (Cambridge : Royal Society of Chemistry, 2015) Prehal, C.; Weingarth, Daniel; Perre, Emilie; Lechner, R.T.; Amenitsch, H.; Paris, O.; Presser, Volker
    The charge storage mechanism and ion arrangement inside electrically charged carbon nanopores is a very active research field with tremendous importance for advanced electrochemical technologies, such as supercapacitors or capacitive deionization. Going far beyond the state of art, we present for the first time a comprehensive study of tracking ion electrosorption in aqueous electrolytes during charging and discharging of porous carbon electrodes using in situ X-ray scattering. We provide novel and quantitative insights into the local concentration of anions and cations and demonstrate that the global number of ions within the pores does not vary during charging and discharging. In addition, we have unique access to the spatial arrangement of ions inside carbon nanopores by using a simple, yet powerful two-phase model. Applying this model to our data, we show that double-layer formation is accomplished by a unique combination of preferred counter-ion adsorption directly at the pore wall which drains ions from their local surrounding inside carbon nanopores. Effectively, this leads to a situation which globally appears as ion swapping.
  • Item
    Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte
    (Amsterdam : Elsevier, 2016) Jäckel, Nicolas; Weingarth, Daniel; Schreiber, Anna; Krüner, Benjamin; Zeiger, Marco; Tolosa Rodriguez, Aura Monserrat; Aslan, Mesut; Presser, Volker
    In this study, we investigate two different activated carbons and four conductive additive materials, all produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity: one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous pore structure. Electrochemical benchmarking was done in one molar tetraethylammonium tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization was carried out by varied techniques. This way, we correlate the electrochemical performance with composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass loading for different admixtures of conductive additives to activated carbon. The electrochemical rate handling (from 0.1 A g−1 to 10 A g−1) and long-time stability testing via voltage floating (100 h at 2.7 V cell voltage) show the influence of functional surface groups on carbon materials and the role of percolation of additive particles.