Search Results

Now showing 1 - 10 of 32
  • Item
    Optimal elliptic Sobolev regularity near three-dimensional, multi-material Neumann vertices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Haller-Dintelmann, Robert; Höppner, Wolfgang; Kaiser, Hans-Christoph; Rehberg, Joachim; Ziegler, Günter M.
    We study relative stability properties of different clusters of closely packed one- and two-dimensional localized peaks of the Swift-Hohenberg equation. We demonstrate the existence of a 'spatial Maxwell' point where clusters are almost equally stable, irrespective of the number of pes involved. Above (below) the Maxwell point, clusters become more (less) stable with the increase of the number of peaks
  • Item
    A criterion for a two-dimensional domain to be Lipschitzian
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Rehberg, Joachim
    We prove that a two-dimensional domain is already Lipschitzian if only its boundary admits locally a one-dimensional, bi-Lipschitzian parametrization.
  • Item
    Blow-up versus boundedness in a nonlocal and nonlinear Fokker-Planck equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Dreyer, Wolfgang; Huth, Robert; Mielke, Alexander; Rehberg, Joachim; Winkler, Michael
    Literaturverz.
  • Item
    Direct computation of elliptic singularities across anisotropic, multi-material edges
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Haller-Dintelmann, Robert; Kaiser, Hans-Christoph; Rehberg, Joachim
    We characterise the singularities of elliptic div-grad operators at points or edges where several materials meet on a Dirichlet or Neumann part of the boundary of a two- or three-dimensional domain. Special emphasis is put on anisotropic coefficient matrices. The singularities can be computed as roots of a characteristic transcendental equation. We establish uniform bounds for the singular values for several classes of three- and fourmaterial edges. These bounds can be used to prove optimal regularity results for elliptic div-grad operators on three-dimensional, heterogeneous, polyhedral domains with mixed boundary conditions. We demonstrate this for the benchmark Lshape problem.
  • Item
    Optimal control for the thermistor problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Hömberg, Dietmar; Meyer, Christian; Rehberg, Joachim; Ring, Wolfgang
    This paper is concerned with the state-constrained optimal control of the two-dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Existence, uniqueness and continuity for the state system are derived by employing maximal elliptic and parabolic regularity. By similar arguments the linearized state system is discussed, while the adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem.
  • Item
    Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Disser, Karoline; Kaiser, Hans-Christoph; Rehberg, Joachim
    On bounded three-dimensional domains, we consider divergence-type operators including mixed homogeneous Dirichlet and Neumann boundary conditions and discontinuous coefficient functions. We develop a geometric framework in which it is possible to prove that the operator provides an isomorphism of suitable function spaces. In particular, in these spaces, the gradient of solutions turns out to be integrable with exponent larger than the space dimension three. Relevant examples from real-world applications are provided in great detail.
  • Item
    Analyticity for some operator functions from statistical quantum mechanics : dedicated to Günter Albinus
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Hoke, Kurt; Kaiser, Hans-Christoph; Rehberg, Joachim; Albinus, Günter
    For rather general thermodynamic equilibrium distribution functions the density of a statistical ensemble of quantum mechanical particles depends analytically on the potential in the Schrödinger operator describing the quantum system. A key to the proof is that the resolvent to a power less than one of an elliptic operator with non-smooth coefficients, and mixed Dirichlet/Neumann boundary conditions on a bounded up to three-dimensional Lipschitz domain factorizes over the space of essentially bounded functions.
  • Item
    The 3D transient semiconductor equations with gradient-dependent and interfacial recombination
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Disser, Karoline; Rehberg, Joachim
    We establish the well-posedness of the transient van Roosbroeck system in three space dimensions under realistic assumptions on the data: non-smooth domains, discontinuous coefficient functions and mixed boundary conditions. Moreover, within this analysis, recombination terms may be concentrated on surfaces and interfaces and may not only depend on chargecarrier densities, but also on the electric field and currents. In particular, this includes Avalanche recombination. The proofs are based on recent abstract results on maximal parabolic and optimal elliptic regularity of divergence-form operators.
  • Item
    Parabolic equations with dynamical boundary conditions and source terms on interfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Elst, A.F.M. ter; Meyries, Martin; Rehberg, Joachim
    We consider parabolic equations with mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hypersurface, enforcing a jump in the conormal derivative. Only minimal regularity assumptions on the domain and the coefficients are imposed. It is shown that the corresponding linear operator enjoys maximal parabolic regularity in a suitable Lp-setting. The linear results suffice to treat also the corresponding nondegenerate quasilinear problems.
  • Item
    Hölder estimates for second-order operators with mixed boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) ter Elst, A.F.M.; Rehberg, Joachim
    In this paper we investigate linear elliptic, second-order boundary value problems with mixed boundary conditions. Assuming only boundedness/ellipticity on the coefficient function and very mild conditions on the geometry of the domain