Search Results

Now showing 1 - 7 of 7
  • Item
    Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms
    (Washington, DC : ACS, 2017) Huang, Huiying; Trotta, Rinaldo; Huo, Yongheng; Lettner, Thomas; Wildmann, Johannes S.; Martín-Sánchez, Javier; Huber, Daniel; Reindl, Marcus; Zhang, Jiaxiang; Zallo, Eugenio; Schmidt, Oliver G.; Rastelli, Armando
    We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.
  • Item
    Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Börner, Martin; Blömer, Laura; Kischel, Marcus; Richter, Peter; Salvan, Georgeta; Zahn, Dietrich R. T.; Siles, Pablo F.; Fuentes, Maria E. N.; Bufon, Carlos C. B.; Grimm, Daniel; Schmidt, Oliver G.; Breite, Daniel; Abel, Bernd; Kersting, Berthold
    The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L’)](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L’ is a ω-mercapto-carboxylato ligand (L’ = HS(CH2)5CO2− (6), HS(CH2)10CO2− (7), or HS(C6H4)2CO2− (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV–vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm−1) and 8 (J = +20.8 cm−1; H = −2JS1S2). The reactivity of complexes 6–8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.
  • Item
    Nanomaterial-decorated micromotors for enhanced photoacoustic imaging
    (Berlin ; Heidelberg : Springer, 2023) Aziz, Azaam; Nauber, Richard; Sánchez Iglesias, Ana; Tang, Min; Ma, Libo; Liz-Marzán, Luis M.; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end, photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents (Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micromotor’s surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding natural chromophores.
  • Item
    Experimental observation of Berry phases in optical Möbius-strip microcavities
    (London [u.a.] : Nature Publ. Group, 2022) Wang, Jiawei; Valligatla, Sreeramulu; Yin, Yin; Schwarz, Lukas; Medina-Sánchez, Mariana; Baunack, Stefan; Lee, Ching Hua; Thomale, Ronny; Li, Shilong; Fomin, Vladimir M.; Ma, Libo; Schmidt, Oliver G.
    The Möbius strip, a fascinating loop structure with one-sided topology, provides a rich playground for manipulating the non-trivial topological behaviour of spinning particles, such as electrons, polaritons and photons, in both real and parameter spaces. For photons resonating in a Möbius-strip cavity, the occurrence of an extra phase—known as the Berry phase—with purely topological origin is expected due to its non-trivial evolution in parameter space. However, despite numerous theoretical investigations, characterizing the optical Berry phase in a Möbius-strip cavity has remained elusive. Here we report the experimental observation of the Berry phase generated in optical Möbius-strip microcavities. In contrast to theoretical predictions in optical, electronic and magnetic Möbius-topology systems where only Berry phase π occurs, we demonstrate that a variable Berry phase smaller than π can be acquired by generating elliptical polarization of resonating light. Möbius-strip microcavities as integrable and Berry-phase-programmable optical systems are of great interest in topological physics and emerging classical or quantum photonic applications.
  • Item
    Direct imaging of nanoscale field-driven domain wall oscillations in Landau structures
    (Cambridge : RSC Publ., 2022) Singh, Balram; Ravishankar, Rachappa; Otálora, Jorge A.; Soldatov, Ivan; Schäfer, Rudolf; Karnaushenko, Daniil; Neu, Volker; Schmidt, Oliver G.
    Linear oscillatory motion of domain walls (DWs) in the kHz and MHz regime is crucial when realizing precise magnetic field sensors such as giant magnetoimpedance devices. Numerous magnetically active defects lead to pinning of the DWs during their motion, affecting the overall behavior. Thus, the direct monitoring of the domain wall's oscillatory behavior is an important step to comprehend the underlying micromagnetic processes and to improve the magnetoresistive performance of these devices. Here, we report an imaging approach to investigate such DW dynamics with nanoscale spatial resolution employing conventional table-top microscopy techniques. Time-averaged magnetic force microscopy and Kerr imaging methods are applied to quantify the DW oscillations in Ni81Fe19 rectangular structures with Landau domain configuration and are complemented by numeric micromagnetic simulations. We study the oscillation amplitude as a function of external magnetic field strength, frequency, magnetic structure size, thickness and anisotropy and understand the excited DW behavior as a forced damped harmonic oscillator with restoring force being influenced by the geometry, thickness, and anisotropy of the Ni81Fe19 structure. This approach offers new possibilities for the analysis of DW motion at elevated frequencies and at a spatial resolution of well below 100 nm in various branches of nanomagnetism.
  • Item
    Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
    (College Park, Md. [u.a.] : American Physical Society, 2018) Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p, a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
  • Item
    Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides
    (Washington, DC [u.a.] : Assoc., 2022) Liu, Lixiang; Huang, Shaozhuan; Shi, Wujun; Sun, Xiaolei; Pang, Jinbo; Lu, Qiongqiong; Yang, Ye; Xi, Lixia; Deng, Liang; Oswald, Steffen; Yin, Yin; Liu, Lifeng; Ma, Libo; Schmidt, Oliver G.; Shi, Yumeng; Zhang, Lin
    Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional “Swiss-roll” microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.