Direct imaging of nanoscale field-driven domain wall oscillations in Landau structures

Abstract

Linear oscillatory motion of domain walls (DWs) in the kHz and MHz regime is crucial when realizing precise magnetic field sensors such as giant magnetoimpedance devices. Numerous magnetically active defects lead to pinning of the DWs during their motion, affecting the overall behavior. Thus, the direct monitoring of the domain wall's oscillatory behavior is an important step to comprehend the underlying micromagnetic processes and to improve the magnetoresistive performance of these devices. Here, we report an imaging approach to investigate such DW dynamics with nanoscale spatial resolution employing conventional table-top microscopy techniques. Time-averaged magnetic force microscopy and Kerr imaging methods are applied to quantify the DW oscillations in Ni81Fe19 rectangular structures with Landau domain configuration and are complemented by numeric micromagnetic simulations. We study the oscillation amplitude as a function of external magnetic field strength, frequency, magnetic structure size, thickness and anisotropy and understand the excited DW behavior as a forced damped harmonic oscillator with restoring force being influenced by the geometry, thickness, and anisotropy of the Ni81Fe19 structure. This approach offers new possibilities for the analysis of DW motion at elevated frequencies and at a spatial resolution of well below 100 nm in various branches of nanomagnetism.

Description
Keywords
Active defects, Direct imaging, Direct monitoring, Giant magneto-impedance, Magnetic fields sensors, Magnetically actives, Nano scale, Oscillatory behaviors, Oscillatory motion, Wall oscillations
Citation
Singh, B., Ravishankar, R., Otálora, J. A., Soldatov, I., Schäfer, R., Karnaushenko, D., et al. (2022). Direct imaging of nanoscale field-driven domain wall oscillations in Landau structures. 14(37). https://doi.org//10.1039/d2nr03351h
Collections
License
CC BY 3.0 Unported