Search Results

Now showing 1 - 10 of 33
  • Item
    Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics
    (Bristol : IOP Publ., 2016) Lazzaroni, Giuliano; Rossi, Riccarda; Thomas, Marita; Toader, Rodica
    This note deals with the analysis of a model for partial damage, where the rate- independent, unidirectional flow rule for the damage variable is coupled with the rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity according to Kelvin-Voigt rheology. The results presented here combine the approach from Roubicek [1, 2] with the methods from Lazzaroni/Rossi/Thomas/Toader [3]. The present analysis encompasses, differently from [2], the monotonicity in time of damage and the dependence of the viscous tensor on damage and temperature, and, unlike [3], a nonconstant heat capacity and a time-dependent Dirichlet loading.
  • Item
    GENERIC for dissipative solids with bulk-interface interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Thomas, Marita
    The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition functional derivatives we propose a GENERIC framework for systems with bulk-interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.
  • Item
    Gradient structure for optoelectronic models of semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Mielke, Alexander; Peschka, Dirk; Rotundo, Nella; Thomas, Marita
    We derive an optoelectronic model based on a gradient formulation for the relaxation of electron-, hole- and photon- densities to their equilibrium state. This leads to a coupled system of partial and ordinary differential equations, for which we discuss the isothermal and the non-isothermal scenario separately.
  • Item
    Cohesive zone-type delamination in visco-elasticity : to the occasion of the 60th anniversary of Tomaš Roubícek
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Thomas, Marita; Zanini, Chiara
    We study a model for the rate-independent evolution of cohesive zone delamination in a viscoelastic solid, also exposed to dynamics effects. The main feature of this model, inspired by [OP99], is that the surface energy related to the crack opening depends on the history of the crack separation between the two sides of the crack path, and allows for different responses upon loading and unloading. Due to the presence of multivalued and unbounded operators featuring non-penetration and the memory-constraint in the strong formulation of the problem, we prove existence of a weaker notion of solution, known as semistable energetic solution, pioneered in [Rou09] and refined in [RT15a].
  • Item
    Damage of nonlinearly elastic materials at small strain : existence and regularity results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Thomas, Marita; Mielke, Alexander
    Literaturverz. S. 31 In this paper an existence result for energetic solutions of rate-independent damage processes is established and the temporal regularity of the solution is discussed. We consider a body consisting of a physically nonlinearly elastic material undergoing small deformations and partial damage. The present work is a generalization of [Mielke-Roubicek 2006] concerning the properties of the stored elastic energy density as well as the suitable Sobolev space for the damage variable: While previous work assumes that the damage variable z satisfies z ? W^1,r (Omega) with r>d for Omega ? R^d, we can handle the case r>1 by a new technique for the construction of joint recovery sequences. Moreover, this work generalizes the temporal regularity results to physically nonlinearly elastic materials by analyzing Lipschitz- and Hölder-continuity of solutions with respect to time.
  • Item
    Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants
    (Berlin : Wiley-VCH, 2020) Thomas, Marita; Bilgen, Carola; Weinberg, Kerstin
    Phase-field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results.
  • Item
    Variational approach to fluid-structure interaction via GENERIC
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Peschka, Dirk; Zafferi, Andrea; Heltai, Luca; Thomas, Marita
    We present a framework to systematically derive variational formulations for fluid-structure interaction problems based on thermodynamical driving functionals and geometric structures in different coordinate systems by suitable transformations within this formulation. Our approach provides a promising basis to construct structure-preserving discretization strategies.
  • Item
    From adhesive to brittle delamination in visco-elastodynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Rossi, Riccarda; Thomas, Marita
    In this paper we analyze a system for brittle delamination between two visco-elastic bodies, also subject to inertia, which can be interpreted as a model for dynamic fracture. The rate-independent flow rule for the delamination parameter is coupled with the momentum balance for the displacement, including inertia. This model features a nonsmooth constraint ensuring the continuity of the displacements outside the crack set, which is marked by the support of the delamination parameter. A weak solvability concept, generalizing the notion of energetic solution for rate-independent systems to the present mixed rate-dependent/rate-independent frame, is proposed. Via refined variational convergence techniques, existence of solutions is proved by passing to the limit in approximating systems which regularize the nonsmooth constraint by conditions for adhesive contact. The presence of the inertial term requires the design of suitable recovery spaces small enough to provide compactness but large enough to recover the information on the crack set in the limit.
  • Item
    A comparison of delamination models: Modeling, properties, and applications
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Thomas, Marita
    This contribution presents recent results in the modeling and the analysis of delamination problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating surface are discussed.
  • Item
    From nonlinear to linear elasticity in a coupled rate-dependent/independent system for brittle delamination
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Rossi, Riccarda; Thomas, Marita
    We revisit the weak, energetic-type existence results obtained in [RT15] for a system for rateindependent, brittle delamination between two visco-elastic, physically nonlinear bulk materials and explain how to rigorously extend such results to the case of visco-elastic, linearly elastic bulk materials. Our approximation result is essentially based on deducing the MOSCO-convergence of the functionals involved in the energetic formulation of the system. We apply this approximation result in two different situations at small strains: Firstly, to pass from a nonlinearly elastic to a linearly elastic, brittle model on the time-continuous level, and secondly, to pass from a time-discrete to a time-continuous model using an adhesive contact approximation of the brittle model, in combination with a vanishing, super-quadratic regularization of the bulk energy. The latter approach is beneficial if the model also accounts for the evolution of temperature.