Search Results

Now showing 1 - 3 of 3
  • Item
    XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH
    (Chester : IUCr, 2018-8-3) Sauppe, Mario; Rompotis, Dimitrios; Erk, Benjamin; Bari, Sadia; Bischoff, Tobias; Boll, Rebecca; Bomme, Cédric; Bostedt, Christoph; Dörner, Simon; Düsterer, Stefan; Feigl, Torsten; Flückiger, Leonie; Gorkhover, Tais; Kolatzki, Katharina; Langbehn, Bruno; Monserud, Nils; Müller, Erland; Müller, Jan P.; Passow, Christopher; Ramm, Daniel; Rolles, Daniel; Schubert, Kaja; Schwob, Lucas; Senfftleben, Björn; Treusch, Rolf; Ulmer, Anatoli; Weigelt, Holger; Zimbalski, Jannis; Zimmermann, Julian; Möller, Thomas; Rupp, Daniela
    Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.
  • Item
    The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects
    (Chester : IUCr, 2021) Kuster, Markus; Ahmed, Karim; Ballak, Kai Erik; Danilevski, Cyril; Ekmedžić, Marko; Fernandes, Bruno; Gessler, Patrick; Hartmann, Robert; Hauf, Steffen; Holl, Peter; Meyer, Michael; Montaño, Jacobo; Münnich, Astrid; Ovcharenko, Yevheniy; Rennhack, Nils; Rüter, Tonn; Rupp, Daniela; Schlosser, Dieter; Setoodehnia, Kiana; Schmitt, Rüdiger; Strüder, Lothar; Tanyag, Rico Mayro P.; Ulmer, Anatoli; Yousef, Hazem
    The X-ray free-electron lasers that became available during the last decade, like the European XFEL (EuXFEL), place high demands on their instrumentation. Especially at low photon energies below 1 keV, detectors with high sensitivity, and consequently low noise and high quantum efficiency, are required to enable facility users to fully exploit the scientific potential of the photon source. A 1-Megapixel pnCCD detector with a 1024 × 1024 pixel format has been installed and commissioned for imaging applications at the Nano-Sized Quantum System (NQS) station of the Small Quantum System (SQS) instrument at EuXFEL. The instrument is currently operating in the energy range between 0.5 and 3 keV and the NQS station is designed for investigations of the interaction of intense FEL pulses with clusters, nano-particles and small bio-molecules, by combining photo-ion and photo-electron spectroscopy with coherent diffraction imaging techniques. The core of the imaging detector is a pn-type charge coupled device (pnCCD) with a pixel pitch of 75 µm × 75 µm. Depending on the experimental scenario, the pnCCD enables imaging of single photons thanks to its very low electronic noise of 3 e− and high quantum efficiency. Here an overview on the EuXFEL pnCCD detector and the results from the commissioning and first user operation at the SQS experiment in June 2019 are presented. The detailed descriptions of the detector design and capabilities, its implementation at EuXFEL both mechanically and from the controls side as well as important data correction steps aim to provide useful background for users planning and analyzing experiments at EuXFEL and may serve as a benchmark for comparing and planning future endstations at other FELs.
  • Item
    Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser
    ([Bad Honnef] : Dt. Physikalische Ges., 2017-04-10) Savelyev, Evgeny; Boll, Rebecca; Bomme, Cédric; Schirmel, Nora; Redlin, Harald; Erk, Benjamin; Düsterer, Stefan; Müller, Erland; Höppner, Hauke; Toleikis, Sven; Müller, Jost; Kristin Czwalinna, Marie; Treusch, Rolf; Kierspel, Thomas; Mullins, Terence; Trippel, Sebastian; Wiese, Joss; Küpper, Jochen; Brauβe, Felix; Krecinic, Faruk; Rouzée, Arnaud; Rudawski, Piotr; Johnsson, Per; Amini, Kasra; Lauer, Alexandra; Burt, Michael; Brouard, Mark; Christensen, Lauge; Thøgersen, Jan; Stapelfeldt, Henrik; Berrah, Nora; Müller, Maria; Ulmer, Anatoli; Techert, Simone; Rudenko, Artem; Rolles, Daniel
    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene (C6H3F2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. We discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.